Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The protection of information that reside in smart devices like IoT nodes is becoming one of the main concern in modern design. The possibility to mount a non-invasive attack with no expensive equipment, such as a Power Analysis Attack (PAA), remarks the needs of countermeasures that aims to thwart attacks exploiting power consumption. In addition to that, designers have to deal with demanding requirements, since those smart devices require stringent area and energy constraints. In this work, a novel analog-level approach to counteract PAA is presented, taking benefits of the current-mode approach. The kernel of this approach is that the information leakage exploited in a PAA is leaked through current absorption of a cryptographic device. Thanks to an on-chip measuring of the current absorbed by the cryptographic logic, it is possible to generate an error signal. Throughout a current-mode feedback mechanism, the data-dependent component of the overall consumption can be compensated, making the energy requirement constant at any cycle and thwarting the possibility to recover sensible information. Two possible implementations of the proposed approach are presented in this work and their effectiveness has been evaluated using a 40nm CMOS design library. The proposed approach is able to increase the Measurements to Disclosure (MTD) of at least three orders of magnitude, comparing to the unprotected implementation. It has to be pointed out that the on-chip current-mode suppressor, based on the proposed approach, is able to provide a very good security performance, while requiring a very small overhead in terms of silicon area (xl.007) and power consumption (xl.07).
EN
Delay-based Dual-rail Pre-charge Logic (DDPL) is a logic style introduced with the aim of hiding power consumption in cryptographic circuits when a Power Analysis (PA) attack is mounted. Its particular data encoding allows to make the adsorbed current constant for each data input combination, irrespective of capacitive load conditions. The purpose is to break the link between dynamic power and data statistics and preventing power analysis. In this work we present a novel implementation of a dynamic differential master-slave flip-flop which is compatible with the DDPL data encoding. Efforts were made in order to design a completely dynamic master-slave architecture which does not require a conversion of the signals from dynamic to static domain. Moreover we show that the area occupied is also reduced due to a compact differential layout. Simulations performed using a 65nm-CMOS process showed that the proposed circuit exhibits good performance in terms of NED (Normalized Energy Deviation) and CV (Coefficient of Variation) of the current samples as required in transistor level countermeasures against power analysis, and it outperforms other previously published DPA-resistant flip-flops in the real case of unbalanced load conditions.
EN
Nyquist stability criterion is largely used to determine the number of Right-Half Plane poles of feedback systems and circuits. However, visual inspection of open-loop gain polar plot is required, and automatic stability check within microwave CAD tools is not possible. In this paper, a procedure to check system and circuit linear stability by means of Nyquist criterion within CAD tools, is presented. The proposed method makes use of integral phase evaluation of a transfer function, and does not require visual inspection of Nyquist plots. The method has been successfully implemented in commercial microwave CAD tools.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.