Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Leaf functional traits are indicators of both plant community and ecosystem responses to environmental factors and can thus increase our capacity to understand ecosystem processes and community assembly due to climate change. The variation in leaf functional traits between succession stages in Horqin Sandy Land is caused by soil nutrient content and by intrinsic biological characteristic of species, but the effects are different. Leaf economic spectra were assessed for seven leaf traits of eight species from early and advanced stages of succession. Species from early succession stages are Agriophyllum squarrosum (L.) Moq., Corispermum macrocarpum Bge., Setaria viridis (L.) Beauv. and Pennisetum centrasiaticum Tzvel., and species from advanced successional stages are Chenopodium acuminatum Willd., Chloris virgate Swartz, Digitaria sanguinalis (L.) Scop. and Leymus secalinus (Georgi) Tzvel. All these species were grown in a greenhouse experiment under two contrasting nutrient supplies including high nutrient level (N+, with 20 g of nutrient addition) and low nutrient level (N-, with no added nutrients). As expected, the resource uptake strategies of the species were affected by soil fertilization addition. Leaf nitrogen content (LNC), leaf phosphorus content (LPC), and photosynthetic capacity per unit leaf area (Aarea) significantly increased at high nutrient level but LPC is more dramatically changed than others leaf traits. Leaf life span (LLS) and specific leaf area (SLA) did not show similar tendency with succession stage. At the same nutrient level, LES still shows different pattern between the early and the advanced succession stages. Species from early succession stages have higher LPC and Aarea, compared to species from advanced stages. Species from early succession stage also tend to have higher SLA and higher LNC than at the advanced succession stage. The LLS did not show any clear changes with succession process. These results provide evidence that LES shift along the succession process is mainly caused by intrinsic biological characteristic of species.
EN
The Schlumberger Doll Research (SDR) model and cross plot of porosity versus permeability cannot be directly used in tight gas sands. In this study, the HFU approach is introduced to classify rocks, and determine the involved parameters in the SDR model. Based on the difference of FZI, 87 core samples, drilled from tight gas sandstones reservoirs of E basin in northwest China and applied for laboratory NMR measurements, were classified into three types, and the involved parameters in the SDR model are calibrated separately. Meanwhile, relationships of porosity versus permeability are also established. The statistical model is used to calculate consecutive FZI from conventional logs. Field examples illustrate that the calibrated SDR models are applicable in permeability estimation; models established from routine core analyzed results are effective in reservoirs with permeability lower than 0.3 mD, while the unified SDR model is only valid in reservoirs with permeability ranges from 0.1 to 0.3 mD.
EN
Based on the analysis of mercury injection capillary pressure (MICP) and nuclear magnetic resonance (NMR) experimental data for core plugs, which were drilled from two Chinese tight sandstone reservoirs, permeability prediction models, such as the classical SDR, Timur– Coates, the Swanson parameter, the Capillary Parachor, the R10 and R35 models, are calibrated to estimating permeabilities from field NMR logs, and the applicabilities of these permeability prediction models are compared. The processing results of several field examples show that the SDR model is unavailable in tight sandstone reservoirs. The Timur– Coates model is effective once the optimal T2cutoff can be acquired to accurately calculate FFI and BVI from field NMR logs. The Swanson parameter model and the Capillary Parachor model are not always available in tight sandstone reservoirs. The R35 based model cannot effectively work in tight sandstone reservoirs, while the R10 based model is optimal in permeability prediction.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.