Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Consider an agent executing a plan with nondeterministic actions, in a dynamic environment, which might fail. Suppose that she is given a description of this action domain, including specifications of effects of actions, and a set of trajectories for the execution of this plan, where each trajectory specifies a possible execution of the plan in this domain. After executing some part of the plan, suppose that she obtains information about the current state of the world, and notices that she is not at a correct state relative to the given trajectories. How can she find an explanation (a point of failure) for such a discrepancy? An answer to this question can be useful for different purposes. In the context of execution monitoring, points of failure can determine some checkpoints that specify when to check for discrepancies, and they can sometimes be used for recovering from discrepancies that cause plan failures. At the modeling level, points of failure may provide useful insight into the action domain for a better understanding of the domain, or reveal errors in the formalization of the domain. We study the question above in a general logic-based knowledge representation framework, which can accommodate nondeterminism and concurrency. In this framework, we define a discrepancy and an explanation for it, and analyze the computational complexity of detecting discrepancies and finding explanations for them. We introduce a method for computing explanations, and report about a realization of this method using DLV^K, which is a logic-programming based system for reasoning about actions and change.
2
Content available remote Monitoring Agents using Declarative Planning
EN
In this paper we consider the following problem: Given a particular description of a multi-agent system (MAS), is it implemented properly? We assume that we are given (possibly incomplete) information about the system and aim at refuting its proper implementation. In our approach, agent collaboration is described as an action theory. Action sequences reaching the collaboration goal are computed by a planner, whose compliance with the actual MASbehaviour allows to detect possible collaboration failures. The approach can be fruitfully applied to aid in offline testing of a MASimplementation, as well as in online monitoring.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.