Part of the Oxfordian carbonate buildups in the southern part of the Kraków Upland is developed as pseudonodular limestones, which represent segment reefs. These limestones are composed of connected, rounded-oval to subangular carbonate pseudonodules. The pseudonodules, densely packed within the limestone, fall out easily under mechanical stress. The recently observed texture of pseudonodular limestones resulted from two stages of chemical compaction. During the first stage, in the Late Jurassic, high-amplitude and low-amplitude stylolites and dissolution seams were formed. The sites particularly favourable for the development of high-amplitude stylolites were the boundaries between already lithified fragments of the laminar, rigid microbial-sponge framework. The low-amplitude stylolites formed mainly in the intercalated wackestone-packstone, which was lithified somewhat later; hence, the dissolution seams originated at the contacts between the rigid microbial-sponge framework and the wackestonepackstone. After Early Cretaceous erosion, which decreased the burial load, Late Cretaceous sedimentation enabled the renewal of pressure dissolution. Thus, some low-amplitude stylolites evolved into dissolution seams. In stylolites composed of both low- and high-amplitude segments, dissolution proceeded at the bases of interpenetrating high-amplitude stylolite columns, with the simultaneous transformation of low-amplitude stylolite segments into dissolution seams. These seams, which formed at the initial stage of chemical compaction, were subjected in turn to further pressure dissolution, giving rise to the formation of horsetail structures. The vertical stress field, which triggered the pressure dissolution processes, presumably resulted in the formation of high-angle and vertical incipient tension gashes. At the beginning of the processes, these gashes remained closed. In the Cenozoic, under the extensional regime generated by overthrusting Carpathian flysch nappes, some high-angle and vertical dissolution seams and low-amplitude stylolites opened up, forming deformed dissolution seams and deformed stylolites. Under the same conditions, the high-angle and vertical tension gashes opened up as well. Subsequently, during the exposure period, unloading fractures developed, partly as a result of the opening of some subhorizontal and horizontal dissolution seams and stylolites. The unloading fractures, along with the already existing vertical and high-angle tension gashes, formed the network changing the limestone into pseudonodules of various shapes and sizes. The open spaces between the limestone fragments became local conduits for karst waters.
A spectacular epigenetic silicification was encountered in the Oxfordian bedded limestones exposed in the Sokole Hills situated in the Kraków-Częstochowa Upland. The main epigenetic mineral is microcrystalline quartz accompanied by minor goethite, hematite, barite, galena and sphalerite. Locally, the mineralized limestones reveal Pb and Cu contents exceeding over 150 times the background values of these metals in unmineralized limestones. The epigenetic mineralization of the bedded limestones was probably a two-stage process. During the first, Early Cretaceous stage, silicified limestones formed at the erosional surface of a denuded carbonate complex. Such silicification greatly limited the progress of the first karstification phase of the Upper Jurassic carbonates initiated in the Hauterivian. The sources of silica accumulated in the limestones were descending solutions enriched in silica derived from the weathering zone. This silicification affected the topmost part of the Upper Jurassic massive limestones and the deeper portions of the bedded limestones along the fracture systems and stylolites. Early Cretaceous tectonic activity generated new dislocations and re-opened the existing faults, which were subsequently filled with permeable Albian quartz sands. These openings became the migration pathways for ascending, warm, relict, sulphide-carrying hydrothermal solutions at the second formation stage of the epigenetic mineralization. The newly supplied silica from the Albian sands precipitated on the silicified limestones and, as concentric rims, on brecciated, early diagenetic cherts. The second-stage mineralization proceeded under phreatic conditions, presumably close to a fluctuating mixing zone of ascending, warm hydrothermal solutions and descending cold groundwaters. The brecciated cherts acting as silica crystallization nuclei indicate that the last mineralization stage probably followed the final phase of Cenozoic faulting.
The Upper Jurassic carbonates exposed in the southern part of the Kraków-Częstochowa Upland are well known for their significant facies diversity related to the presence of microbial and microbial-sponge carbonate buildups and bedded detrital limestone in between. Both the buildups and detrital limestones revealed differential susceptibility to compaction which, apart from differential subsidence of the Palaeozoic basement and synsedimentary faulting, was one of the factors controlling seafloor palaeorelief in the Late Jurassic sedimentary basin. The compaction of the detrital limestones has been estimated with an experimental oedometric method in which specially prepared mixtures made of ground limestones from a quarry in the village of Żary were subjected to oedometer tests. The diameters of the detrital grains and their percentages in the limestones were determined by microscopic examinations of thin sections. The diameters were assigned to predetermined classes corresponding to the Udden-Wentworth scale. The rock samples were then ground down to the grain sizes observed in thin sections. From such materials, mixtures were prepared of grain size distributions corresponding to those observed in thin sections. After adding water the mixtures were subjected to oedometer tests. Analysis of the compression of such mixtures under specific loads enabled preparation of a mathematical formula suitable for the estimation of mechanical compaction of the limestone. The obtained values varied from 27.52 to 55.53% for a load corresponding to 300 metres burial depth. The most significant effect of mechanical compaction was observed for loads representing only 2 metres burial depth. Further loading resulted in a much smaller reduction in sample height. The results of the oedometer tests cannot be used directly to determine compaction of the detrital limestones. Mainly because microscopic observations of thin sections of the experimental material show that chemical compaction was also an important factor influencing thickness reduction of the limestones.
Detailed micropaleontological investigation of more than 400 samples (150 identified species) from the Mesozoic sediments of southern Poland and southwestern Ukraine was the basis for their correlation. The youngest Mesozoic assemblage identified in the studied material represent the early Late Cretaceous (Turonian). This assemblage occurs in the so-called the III Formation of Turonian epicontinental strata in Poland, and in the Dubivtsi Formation in West Ukraine. Microfossil assemblages of the Early Cretaceous age (Berriasian–Barremian) allow for a correlation of the Ropczyce and Dębica formations (central part of S Poland) and the upper part of the Babczyn and Cieszanów formations (SE Poland) with the Stavchany Formation and a part of the Bukovyna Formation in SW Ukraine. Tithonian microfossil assemblages from Poland resemble those of the shallow-water Nyzhniv Formation from the Ukrainian part of the East European Platform. Open-marine microfossils (e.g. calpionellids) commonly occur only in the Ukrainian material. Poor microfossil assemblages of the Kimmeridgian age occur in majority of studied subdivisions. They were identified in the Sobków Formation and the upper part of the Niwki Formation in the central part of S Poland, Ruda Lubycka, the upper part of the Bełżyce, Basznia, and Głowaczów formations (SE Poland) and in the Moryantsi and Pidluby formations (Bilche-Volitsia zone of the Carpathian Foredeep) and in the Rava Rus’ska Formation (Eastern European Platform). Among the Oxfordian microfossil assemblages, only those containing Alveosepta jaccardi (Schrodt) and Protomarssonella jurassica (Mityanina) allow for a correlation of subdivisions from both areas. These assemblages occur in the “Coral-algal” Formation in the Tarnów–Dębica region and in the Bełżyce, Jasieniec and Jarczów formations in SE Poland. The coeval sediments belong to the Boniv, Rudky and Sokal formations in West Ukraine. Scarce data from the Middle Jurassic sediments do not allow for a correlation of the material studied.
PL
Szczegółowa analiza mikropaleontologiczna ponad 400 próbek (150 oznaczonych gatunków) z utworów mezozoicznych południowej Polski i zachodniej Ukrainy umożliwiła korelację tych utworów. Najmłodsze stwierdzone, w badanym materiale, zespoły reprezentują niższą późną kredę (turon). Zespół ten występuje w tzw. III formacji utworów epikontynentalnych w Polsce oraz w formacji dubowieckiej SW Ukrainy. Zespoły mikroskamieniałości wieku wczesnej kredy (berias–barrem) pozwalają na korelację formacji z Ropczyc i Dębicy (centralna część Polski południowej) oraz górnej części formacji z Babczyna i formacji cieszanowskiej (SE Polska) z formacją stawczańską i częścią formacji bukowińskiej SW Ukrainy. Stwierdzone w materiale z Polski zespoły mikroskamieniałości tytonu przypominają zespoły z płytkowodnych utworów formacji niżniowskiej ukraińskiej części platformy wschodnioeuropejskiej. Natomiast większość zespołów mikroskamieniałości tytonu z badanych utworów SW Ukrainy charakteryzuje obecność form otwartego morza (kalpionellidów). Zespoły mikroskamieniałości kimerydu, choć ubogie,występują w większości badanych utworów. Stwierdzono je w formacji z Sobkowa i w górnej części formacji z Niwek (centralna część Polski południowej) w formacji z Rudy Lubyckiej oraz w górnych częściach formacji bełżyckiej, z Baszni, głowaczowskiej (SE Polska), a także na Ukrainie w formacjach moranieckiej i podlubieckiej (strefa Bilcze-Wolica zapadliska przedkarpackiego) i w formacji z Rawy Ruskiej (platforma wschodnioeuropejska). Z zespołów oksfordu jedynie te, które zawierały otwornice Alveosepta jaccardi (Schrodt) i Protomarssonella jurassica (Mityanina), pozwalają na korelację badanych wydzieleń litostratygraficznych. Zespoły takie występują w formacji „koralowcowo-glonowej” rejonu Tarnów–Dębica (centralna część Polski południowej) oraz w formacjach bełżyckiej, jasienieckiej i jarczowskiej (SE Polska). Na obszarze SW Ukrainy do równowiekowych utworów należą formacje: boniwska, rudkowska i sokalska. Niedostateczna ilość danych mikropaleontologicznych z utworów jury środkowej nie pozwoliła na wykonanie korelacji.
The Upper Oxfordian microbial-sponge agglutinated to open-frame reef complex of the Zegarowe Crags in the Kraków-Częstochowa Upland originated upon an elevation of the Late Jurassic stable northern shelf of the Tethys. This elevation was formed, owing to a local decrease in subsidence rate during Jurassic time, induced by the presence of a Palaeozoic granitoid intrusion in the shelf substratum, and Late Jurassic, synsedimentary tectonics, which controlled the topography of the sea bottom. The Zegarowe Crags (Skały Zegarowe) complex at the top contains microbial laminites, composed of peloidal and agglutinated stromatolites, and intercalations of grainstones with indeterminable, favrenoid coprolites, occurring in large numbers. The development of stromatolites was associated with low nutrient availability. In contrast, the periodic activity of crabs, the main producers of the coprolites, forming the coprolitic grainstone intercalations, indicates periods, when nutrients were abundant in the sea water. The nutrinets most likely were associated with the occurrence of clouds of suspended matter, induced by gravity flows, generated by active, synsedimentary tectonics. The results of isotopic studies do not support the presence of warm, mineralizing solutions, connected with synsedimentary tectonics during development of the Zegarowe Crags complex in the Late Jurassic.
Comprehensive geochemical analyses (Rock-Eval pyrolysis, stable carbon isotopes, biomarkers and aromatic hydrocarbons and elemental composition of kerogen) provide an explanation of genetic relationships between dispersed organic matter in various source rock horizons of the Palaeozoic–Mesozoic basement in the Carpathian Foredeep and also the liquid (oils and condensates) and gaseous hydrocarbons accumulated in reservoirs in the area between Kraków and Ivano-Frankivs’k. The study region was divided into seven zones around oil, condensate and gas deposits for detailed determination of genetic oil – natural gas – source rock correlation. Based on source, reservoir, seal and overburden rocks, generation, expulsion, migration and accumulation of hydrocarbons and trap formation along with 1-D and 2-D modelling, two separated petroleum systems of the Palaeozoic–Mesozoic strata were established. One petroleum system occurs in the western part of the Małopolska Block, the second one in the eastern part of the Małopolska Block and western part of the Kokhanivka Zone (south-eastern Poland – western Ukraine). In addition, nine generation and expulsion areas were identified. The comparison of the two petroleum systems reveals that the western part of the Małopolska Block has considerably greater prospects for oil and gas exploration than the eastern part of the Małopolska Block and the western part of the Kokhanivka Zone.
A comparative sedimentological analysis of the Upper Jurassic–Lower Cretaceous deposits carried out on drill-cores from the southern part of the Carpathian Foredeep allowed us to distinguish thirteen main microfacies types. The results of microfacies analyses and stratigraphical data made it possible to propose a lithological subdivision of the southern part of the Upper Jurassic and Lower Cretaceous sediments of the Carpathian Foredeep basement between Kraków and Rzeszów. In the analysed wells, three main sedimentary complexes were distinguished, embracing the following intervals: (i) Callovian–Oxfordian, (ii) Kimmeridgian and (iii) Tithonian– Berriasian–Valanginian. The Oxfordian, Kimmeridgian and Tithonian deposits represent the outer – mid homoclinal ramp facies, whereas the Berriasian and Valanginian deposits belong to the inner homoclinal ramp facies. Complexes of microbial-sponge reefs, with a distinct relief, could be recognised in the Upper Oxfordian sediments only. The development of these buildups took place in a basin typified by diversified morphology, determined by the block-type structure of the Palaeozoic basement and synsedimentary tectonics, which brought about substantial variability in thickness of the Oxfordian sediments. At the end of the Oxfordian, large complexes of the reef facies were replaced mainly by microbial-sponge and microbial-coral biostromes developed during the Kimmeridgian and Tithonian. In the principal part of the studied area (except the western part of the described fragment of the Carpathian Foredeep; Kraków area) during the Kimmeridgian, Tithonian, Berriasian and Valanginian, sedimentation occurred in a basin typified by homogeneous morphology, which resulted in a wide extent and comparable thicknesses of the distinguished facies types. In the studied sections, indications of partial or complete dolomitization were observed in a large part of the sediments. Four generations of dolomite document a complex diagenetic history with multiple episodes of dolomite formation: from early diagenetic environment to late burial conditions.
9
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
The Upper Jurassic carbonate sediments in the Carpathian foreland in Poland are exposed in the Polish Jura Chain and covered by the Outer Carpathian thrust and Neogene sediments of the Carpathian Foredeep. The thickness of marine Jurassic-Cretaceous carbonate series exceeds 1000 m in southern Poland and Ukraine covering the North European Platform. The lithology of the Upper Jurassic and Lower Cretaceous deposits reflects the main stages of sedimentation on the European Platform caused by eustatic changes of sea-level as well as local tectonics. Two megasequences could be distinguished here (Golonka & Kiessling 2002). Lower Zuni II, began with the Middle Jurassic transgression and ended with Early Tithonian regression. Lower Zuni III lasted from Early Tithonian to the general Early Valanginian regression. There is a gap between Lower and Upper Cretaceous deposits in the whole Carpathian Foredeep area. The Lower Zuni II starts with sandstone-gaize series passing upward to the Callovian nodular limestones covered by Lower Oxfordian calcareous sponge deposits (Golonka 1978; Olszewska 2001). The carbonate buildups of thickness from few dozens to few hundreds meters are common within the calcareous sponge series. They form hills in the Polish Jura Chain between Kraków and Częstochowa (Matyszkiewicz 1997), in the SW margin of the Holy Cross Mountains and have been recognized in the numerous 2-D and 3-D seismic subcrop sections. Interpretation of the 3D seismic data in the central part of the Carpathian foreland resulted in the recognition of several large Lower Oxfordian biohermal buildups exceeding 1 km in diameter (Misiarz 2004). Comparison with the outcrop data and seismic velocity models allows to propose new facies architecture model. The large bodies seen on the 2D seismic lines represent the clusters of small buildups. Similar clusters exist in the Jurassic outcrops in the Polish Jura Chain in the Ogrodzieniec and Olsztyn areas. The Ogrodzieniec hill was a subject of the syntethic seismic modeling of the outcrop. The impedance was calculated from the petrophysical studies of rock samples. Impedance inversion velocities were used to construct simple velocity model of a selected biohermal object and a synthetic seismic profile. Explaining internal heterogeneity of bioherms is crucial for treating them not as a single prospect but as a complex of drilling targets.
This paper presents the methods and scope of teaching geological mapping at the Geological Mapping Department, Faculty of Geology, Geophysics and Environments Protection, Stanisław Staszic AGH University of Science and Technology. The main curriculum of Structural Geology and Geological Mapping consists of lectures, laboratory exercises and a summer field practice in Poland, Croatia, Slovakia or Ukraine. Teaching of geological mapping is linked to research done by the staff and to the content of the course Geomorphology and Quaternary Geology (geomorphological mapping). Students have been also taught practical use of the GPS (Global Positioning System).
11
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
Jurajskie baseny północnej Tetydy powstały w wyniku rozpadu Pangei. W dolnej-środkowej jurze powstała Tetyda alpejska, podzielona przez wśródoceaniczny grzbiet czorsztyński na północnozachodni basen magurski, i południowowschodni basen pienińskiego pasa skałkowego. W późnej jurze rozwinął się ryft Karpat zewnętrznych (basen śląski) wypełniony górnojurajskimi-dolnokredowymi osadami fliszowymi. Grzbiet śląski oddzielał basen śląski od magurskiego. Na obszarze przedgórza Karpat mamy do czynienia z facjami Perytetydy reprezentowanymi przez osady węglanowe najwyższego doggeru - najniższego walanżyn. Można tu wyróżnić dwie megasekwencje: dolna zuni II, oraz dolna zuni III. Megasekwencja dolna zuni II rozpoczynałaby się transgresją w jurze środkowej a kończyłaby się regresją na przełomie kimeryd-tyton lub dolnym tytonie. Megasekwencja dolna zuni III zaczyna się cyklem transgresyjnym w dolnym tytonie a kończyłaby się generalną regresją w dolnym walanżynie. Na całym obszarze zapadliska występuje luka stratygraficzna pomiędzy kredą dolną i górną.
EN
Jurassic basins of the Northern Tethys originated during the Pangea break-up. During Early-Middle Jurassic Alpine Tethys was born. It was divided by middle-oceanic Czorsztyn Ridge into northwestern Magura Basin and southeastern Pieniny Klippen Belt Basin, The Outer Carpathian rift (Silesian Basin) developed during Late Jurassic. It was filled with the Upper Jurassic-Early Cretaceous flysch deposits. The Silesian ridge separated Silesian an Magura Basin. In the Carpathian foreland area Peri-Tethys facies were represented by uppermost Dogger - lowermost Valanginian carbonate deposits. Two megasequences could be distinguished here Lower Zuni II, began with the Middle Jurassic transgression and ended with Early Tithonian regression. Lower Zuni III lasted from Early Tithonian to the general Early Valanginian regression. There is a gap between Lower and Upper Cretaceous deposits in the whole Carpathian Foredeep area.
12
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
Porównanie rozmieszczenia struktur paleozoicznego podłoża z regionalnym rozmieszczeniem kompleksów budowli górnojurajskich na Wyżynie Krakowsko-Wieluńskiej wykazuje wyraźną korelację. Na mapie magnetycznej Wyżyny Krakowsko-Wieluńskiej widoczne są anomalie, których źródłem są występujące w podłożu intruzje, głównie porfirowe i granitoidowe. Wydaje się, że obecność intruzji wzdłuż dyslokacji Kraków - Lubliniec miała istotny wpływ na powstanie i rozwój kompleksów węglanowych w późnej jurze. Niektóre intruzje tworzyły elewacje na dnie morskim. Z kolei na obszarach, gdzie denudacja paleozoicznego podłoża nie sięgnęła intruzji, cechowały się niższą subsydencją wobec obszarów sąsiednich, przez co były predestynowane do tworzenia strukturalnych wyniesień na dnie morskim. Główne kompleksy budowli węglanowych na Wyżynie Krakowsko-Wieluńskiej występują na obszarze od Wyżyny Krakowskiej do północnej części Wyżyny Częstochowskiej, gdzie dyslokacja Kraków - Lubliniec wychodzi poza obręb Wyżyny Krakowsko-Wieluńskiej.
EN
A comparison of the structure of the Palaeozoic basement with the regional distribution of the Upper Jurassic carbonate buildups complexes on the Kraków-Wieluń Upland reveals a distinct coincidence. The magnetic surveys applied to the Kraków-Wieluń Upland show distinct anomalies probably caused by porphyry and granitoid intrusions in Palaeozoic basement. It seems that the development of the carbonate buildups was mainly controlled by the presence of the intrusions in the basement along Kraków-Lubliniec Fault Zone. Some of these intrusions formed elevations on sea bottom. Other areas where denudation did not reach the top of the intrusions had lower subsidence with respect to the neighbouring areas. This made these areas predisposed to the formation of sea bottom elevations. The main carbonate buildups complexes on the Kraków - Wieluń Upland reach farthest to the north of Częstochowa. In this area the Kraków - Lubliniec Fault Zone leaves the upland area.
13
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
Górnojurajskie budowle węglanowe w rejonie Ogrodzieńca tworzą rozległy kompleks, w którym głównym materiałem skałotwórczym są mikrobolity. Mikrobolity te tworzą sztywny szkielet budowli i są rozwinięte jako peloidalne i aglutynujące stromatolity. Tempo wzrostu tego szkieletu było prawdopodobnie dużo wyższe od tempa sedymentacji allomikrytu. Drugim, głównym komponentem skałotwórczym są wypełniające kieszenie ziarnity powstałe z erozji innych fragmentów budowli. Budowle węglanowe z rejonu Ogrodzieńca rozwinęły się na umiarkowanej głębokości, poniżej normalnej podstawy falowania i podlegały erozyjnemu oddziaływaniu ruchu falowego podczas sztormów. Decydującym czynnikiem, który warunkował ich rozwój, było położenie na pomocnym skłonie bariery oddzielającej basen intraszelfowy od otwartego morza
EN
Upper Jurassic carbonate buildups in the Ogrodzieniec area form a large complex in which the main rock-building material are microbolites. The microbolites form rigid framework and are developed as peloidal and agglutinating stromatolites. Growth rate of the rigid framework was probably much higher than the allomicrite sedimentation rate. The second main component are nest-filling grainstones originating from the erosion of the other parts of buildups. The carbonate buildups from Ogrodzieniec area developed at a moderate depth below fairweather wave base and was affected occasionally by intensive water movement during storms. The decisive factor which influenced their development was the position of the area on the northern slope of the elevated rim which separated the intrashelf basin from the open sea
The growth of carbonate buildups in the northern, stable shelf of the Tethyan Ocean was the principal factor in the development of diversified sea-bottom relief in the Late Jurassic basin. Reconstruction of this relief has been a matter of numerous controversies. This paper provides an analysis of published data on elevation differences on sea bottom along the SW margin of the Holy Cross Mts. and in the Cracow-Wielun Upland. Moreover, methods of reconstruction of synsedimentary relief are presented. In the Late Oxfordian the elevations on basin floor in the Czestochowa area (Cracow-Wielun Upland) were about 100 meters at most, and were presumably even lower. The largest (over 200 meters) elevation differences of sea-bottom relief existing in the Czestochowa area at the Oxfordian/Kimmeridgian have been postulated when the recently observed differences in thickness between the deposits of carbonate buildup and of equivalent basinal facies were identified as a relief. In fact, different thickness is, in considerable part, an effect of differential compaction.
PL
Wzrost budowli węglanowych na północnym, stabilnym szelfie Tetydy był główną przyczyną powstania urozmaiconego reliefu dna w basenie późnojurajskim. Rekonstrukcja tego reliefu jest przedmiotem licznych kontrowersji. Praca analizuje dane literaturowe o wielkości deniwelacji dna z rejonu SW-obrzeżenia Gór Świętokrzyskich i Wyżyny Krakowsko-Wieluńskiej oraz omawia metodykę rekonstrukcji reliefu synsedymentacyjnego. Deniwelacje dna basenu u schyłku oksfordu w rejonie Częstochowy wynosiły co najwyżej około 100 m a przypuszczalnie były jeszcze mniejsze. Postulowane wcześniej, ponad dwustumetrowe deniwelacje w basenie w rejonie Częstochowy na przełomie oksfordu i kimerydu były oparte na utożsamianiu z deniwelacjami dna aktualnej różnicy miąższości między utworami budowli węglanowej a ekwiwalentnymi jej utworami facji basenowej. Różnica ta jest w znacznej części wynikiem zróżnicowanej podatności osadów na kompakcję.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.