Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 7

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available remote Oznaczanie antymonu i jego związków w powietrzu na stanowiskach pracy
PL
Antymon jest stosowany wraz z innymi metalami jako dodatek do stopów czcionkowych i łożyskowych. Antymon w formie metalicznej nie jest zaklasyfikowany jako substancja zagrażająca zdrowiu, natomiast jego sole zostały tak sklasyfikowane. Niektóre związki antymonu zostały sklasyfikowane jako substancje rakotwórcze. Obowiązująca wartość najwyższego dopuszczalnego stężenia (NDS) w powietrzu na stanowiskach pracy wynosi 0,5 mg/m3 (Rozporządzenie MRPiPS 2018). Celem badań było opracowanie metody oznaczania antymonu do oceny narażenia zawodowego w zakresie 1/10 ÷ 2 zaproponowanej wartości NDS. Metoda polega na pobraniu antymonu i jego związków zawartych w powietrzu na filtr MCE, mineralizacji filtra w wodzie królewskiej w temperaturze 150°C oraz oznaczeniu zawartości antymonu w próbce z zastosowaniem absorpcyjnej spektrometrii atomowej (AAS) z atomizacją w płomieniu. Metoda oznaczania antymonu została przedstawiona w postaci procedury analitycznej, którą zamieszczono w załączniku. Zakres tematyczny artykułu obejmuje zagadnienia zdrowia oraz bezpieczeństwa i higieny środowiska pracy będące przedmiotem badań z zakresu nauk o zdrowiu i inżynierii środowiska.
EN
Antimony is used as an additive in font and bearing alloys along with other metals. Antimony in metallic form is not classified as a health hazard, while its salts have been so classified. Some antimony compounds have been classified as carcinogens. The applicable value of the maximum allowable concentration (MAC) in air at workplaces is 0.5 mg/m3 (MRPiPS ordinance, 2018). The purpose of this study was to develop a method for the determination of antimony for occupational exposure assessment in the range of 1/10–2 of the proposed MAC values. The method consists of collecting antimony and its airborne compounds from an MCE filter, mineralizing the filter in aqua regia at 150°C, then determining the antimony content in the sample using atomic absorption spectrometry (AAS) with flame atomization. The method for the determination of antimony is presented in the form of an analytical procedure, which is included in the appendix. The scope of the article includes health and environmental health and safety issues that are the subject of research in health sciences and environmental engineering.
2
Content available remote Kwas benzoesowy. Metoda oznaczania w powietrzu na stanowiskach pracy
PL
Kwas benzoesowy jest organicznym związkiem należącym do grupy aromatycznych kwasów karboksylowych. Wykorzystuje się go głównie do produkcji fenolu, kaprolaktamu i soli benzoesowych, jako konserwant spożywczy i farmaceutyczny oraz przy produkcji herbicydów, środków owadobójczych i bakteriobójczych. Zgodnie z rozporządzeniem Parlamentu Europejskiego i Rady (WE 1272/2008) kwas benzoesowy został sklasyfikowany jako substancja działająca szkodliwie na płuca, drażniąca skórę i powodująca uszkodzenie oczu. Celem badań było opracowanie metody oznaczania kwasu benzoesowego do oceny narażenia zawodowego w zakresie 1/10 ÷ 2 zaproponowanej wartości NDS. Metoda polega na pobraniu frakcji wdychalnej kwasu benzoesowego zawartej w powietrzu na filtr z włókna szklanego pokryty węglanem(IV) sodu, desorpcji roztworem metanolu w wodzie, a następnie oznaczeniu zawartości kwasu benzoesowego w próbce z zastosowaniem chromatografii cieczowej z detektorem diodowym (UHPLC-DAD). Podczas wykonywania badań spełniono wymagania walidacyjne przedstawione w normie europejskiej PN-EN 482. Metoda umożliwia oznaczanie kwasu benzoesowego w powietrzu w stężeniach 0,05 ÷ 1 mg/m3. Zakres tematyczny artykułu obejmuje zagadnienia zdrowia oraz bezpieczeństwa i higieny środowiska pracy będące przedmiotem badań z zakresu nauk o zdrowiu oraz inżynierii środowiska.
EN
Benzoic acid is an organic compound that belongs to the group of aromatic carboxylic acids. It is mainly used in the production of phenol, caprolactam and benzoic salts, as a food and pharmaceutical preservative, and in the production of herbicides, insecticides and bactericides. According to the Regulation of the European Parliament and of the Council (WE 1272/2008), benzoic acid is classified as a substance that is harmful to the lungs, irritates the skin and causes eye damage. The aim of the study was to develop a method for the determination of benzoic acid for the assessment of occupational exposure within 1/10–2 of the proposed MAC value. The method involves taking the inhalable fraction of airborne benzoic acid onto a glass fiber filter coated with sodium carbonate(IV), desorption with a solution of methanol in water and then determining the benzoic acid content of the sample by the use of liquid chromatography with diode array detector (UHPLC-DAD). Validation requirements presented in European standard PN-EN 482 were fulfilled during the tests. The method enables determination of benzoic acid in air at concentrations of 0.05 to 1 mg/m3 . The method for determining benzoic acid has been recorded in the form of an analytical procedure (see Appendix). This article discusses the problems of occupational safety and health, which are covered by health sciences and environmental engineering.
PL
Izopren to wysoce lotna ciecz o nieprzyjemnym i drażniącym zapachu, która w powietrzu łatwo ulega polimeryzacji z wydzieleniem energii. Izopren jest stosowany w przemyśle głównie do produkcji opon, dętek, węży ogrodowych, uszczelek oraz odzieży. Pozyskuje się go przemysłowo jako produkt uboczny krakingu termicznego benzyny i ropy lub jako produkt uboczny produkcji etylenu. Jest wytwarzany przez rośliny, w których jest wykorzystywany podczas produkcji terpenoidów, karotenoidów oraz barwników. Zgodnie z rozporządzeniem Parlamentu Europejskiego i Rady (WE 1272/2008) izopren został sklasyfikowany jako substancja rakotwórcza, mutagenna oraz skrajnie łatwopalna. Celem badań było opracowanie metody oznaczania izoprenu do oceny narażenia zawodowego w zakresie 1/10 ÷ 2 zaproponowanej wartości NDS. Metoda polega na pobraniu izoprenu zawartego w powietrzu na rurkę wypełnioną sorbentem ORBO 351, desorpcji disiarczkiem węgla, a następnie oznaczeniu zawartości izoprenu w próbce z zastosowaniem chromatografii gazowej z detektorem płomieniowo-jonizacyjnym (GC-FID). Podczas wykonywania badań spełniono wymagania walidacyjne przedstawione w normie europejskiej PN-EN 482. Metoda umożliwia oznaczanie w powietrzu izoprenu o stężeniach 0,8 ÷ 16 mg/m³ . Zakres tematyczny artykułu obejmuje zagadnienia zdrowia oraz bezpieczeństwa i higieny środowiska pracy będące przedmiotem badań z zakresu nauk o zdrowiu i inżynierii środowiska.
EN
Isoprene is a highly volatile liquid with an unpleasant and irritating odor, which is easily polymerized in the air with the release of energy. Isoprene is used in industry mainly for the production of tires, inner tubes, garden hoses, gaskets and clothing. It is extracted industrially as a byproduct of the thermal cracking of gasoline and oil, or as a byproduct of ethylene production. It can also be produced during condensation of isobutene with formaldehyde or by catalytic dehydrogenation of isopentane. It is made by plants, where it is used during the production of tarpenoids, carotenoids and dyes. According to the Regulation of the European Parliament and of the Council (WE 1272/2008), isoprene has been classified as a carcinogen, mutagen and extremely flammable substance. The aim of the study was to develop a method for determining isoprene to assess occupational exposure within 1/10−2 of the proposed MAC value. The method involves collecting airborne isoprene onto a tube filled with ORBO 351 sorbent, desorbing it in carbon disulfide, and then determining the isoprene content of the sample using gas chromatography with a flame ionization detector (GC-FID). Validation requirements presented in European standard PN-EN 482 were fulfilled during the tests. The method enables determination of isoprene in air at concentrations of 0,8−16 mg/m³ . The method for determining isoprene has been recorded in the form of an analytical procedure (see Appendix). This article discusses the problems of occupational safety and health, which are covered by health sciences and environmental engineering.
PL
Kobalt ze względu na swoje fizykochemiczne właściwości w formie metalicznej jest wykorzystywany przy produkcji stopów odpornych na temperaturę, będących magnesami trwałymi i odlewniczych. Dodatkowo szerokie zastosowanie znajdują sole kobaltu, które są stosowane przy produkcji pigmentów, sykatyw do farb olejnych oraz baterii. Kobalt metaliczny w formie drobnego proszku w kontakcie ze skórą może wywoływać odpowiedź alergiczną. Głównym zagrożeniem dla zdrowia pracownika są rozpuszczalne sole kobaltu, które zgodnie z rozporządzeniem Parlamentu Europejskiego i Rady (WE 1272/2008) są sklasyfikowane jako substancje rakotwórcze. Celem badań było opracowanie metody oznaczania kobaltu do oceny narażenia zawodowego w zakresie 1/10 ÷ 2 zaproponowanej wartości NDS. Metoda polega na pobraniu aerozolu kobaltu i jego związków zawartych w powietrzu na filtr, mineralizacji filtra w kwasie azotowym(V) i kwasie chlorowodorowym w podwyższonej temperaturze, a następnie oznaczeniu zawartości kobaltu w próbce z zastosowaniem absorpcyjnej spektrometrii atomowej z elektrotermiczną atomizacją (ET-AAS). Podczas wykonywania badań spełniono wymagania walidacyjne przedstawione w normie europejskiej PN-EN 482. Metoda umożliwia oznaczanie kobaltu i jego związków w powietrzu w stężeniach 0,0001 ÷ 0,002 mg/m³ dla frakcji respirabilnej. Zakres tematyczny artykułu obejmuje zagadnienia zdrowia oraz bezpieczeństwa i higieny środowiska pracy będące przedmiotem badań z zakresu nauk o zdrowiu i inżynierii środowiska.
EN
Due to its physicochemical properties, cobalt in metallic form is used in the production of the following alloys: heat resistant, permanent magnets and foundry alloys. Moreover, cobalt salts are widely used in the production of pigments, oil drying agents and batteries. Metallic cobalt in the form of fine powder in contact with skin can cause an allergic response. However, the main danger are soluble cobalt salts, which are classified as carcinogens according to the European Union Commission Regulation (WE 1272/2008). The aim of this study was to develop a method for determining cobalt to assess occupational exposure within 1/10 ÷ 2 of the proposed MAC value. The method consists in taking an aerosol of cobalt and its compounds contained in the air onto a filter, mineralization of the filter in nitric acid (V) and hydrochloric acid at elevated temperature and then determination of cobalt content in the sample using atomic absorption spectrometry with electrothermal atomization (ET-AAS). Validation requirements presented in Standard No. PN-EN 482 were fulfilled during the tests. The method allow the determination of cobalt and its compounds in workplace air at concentrations of 0.0001 ÷ 0.002 mg/m³ for the respirable fraction. LOQ is 0.017 µg/m³ . The overall precision of the study was 5.39% and the expanded uncertainty was 23.56%. The method for determining cobalt and its compounds has been recorded in the form of an analytical procedure (see Appendix). This article discusses the problems of occupational safety and health, which are covered by health sciences and environmental engineering.
PL
Wolfram jest metalem przejściowym, który występuje w skorupie ziemskiej w postaci minerałów, z których po wydobyciu jest ekstrahowany. Brakuje danych na temat chronicznych efektów kontaktu z wolframem. Wolfram metaliczny w postaci drobnego proszku jest łatwopalny i może powodować mechaniczne podrażnienie skóry i oczu. Istnieją rozpuszczalne związki wolframu, które są sklasyfikowane jako związki toksyczne, powodujące uszkodzenie oczu i zagrażające środowisku wodnemu. Celem prac badawczych była nowelizacja normy PN-Z-04221-3:1996 dotyczącej oznaczania rozpuszczalnych związków wolframu na stanowiskach pracy metodą spektrofotometryczną z rodankiem potasu. Nowelizacja normy została przeprowadzona, ponieważ norma PN-Z-04221-3 opisuje metodę, w której oznaczalność wynosi 0,25 wartości NDS, a zgodnie z normą europejską PN-EN 482 oznaczalność metody musi być w zakresie 0,1 ÷ 2 NDS. Metoda polega na zatrzymaniu aerozolu rozpuszczalnych związków wolframu na filtrze z mieszaniny estrów celulozowych, a następnie rozpuszczeniu ich w wodzie. W kolejnym etapie wolfram redukowany jest z użyciem chlorku cyny, a następnie ulega reakcji z rodankiem potasu, dając barwny kompleks, który należy ekstrahować alkoholem izoamylowym, aby następnie zmierzyć absorbancję ekstraktu na spektrofotometrze UV-Vis. Pomiary wykonano z użyciem spektrofotometru UV-Vis Heλios firmy ThermoSpectronic model Beta. Wymagania walidacyjne przedstawione w normie europejskiej PN-EN 482 zostały spełnione przy wykonywaniu pomiarów. Dzięki metodzie można oznaczać znajdujące się w powietrzu rozpuszczalne związki wolframu o stężeniach 0,1 ÷ 2 mg/m³ . Granica oznaczalności LOQ wynosi 1,875 ng. Precyzja pomiarów wynosi 5,06%, a niepewność rozszerzona 22,09%. Metoda oznaczania rozpuszczalnych związków wolframu została przedstawiona w postaci procedury analitycznej, którą zamieszczono w załączniku. Zakres tematyczny artykułu obejmuje zagadnienia zdrowia oraz bezpieczeństwa i higieny środowiska pracy będące przedmiotem badań z zakresu nauk o zdrowiu oraz inżynierii środowiska.
EN
Tungsten is a transition metal which occurs in the Earth’s crust as minerals which after being mined is extracted. There is no data on chronic effects of contact with tungsten, although fine tungsten powder is flammable and can cause mechanical irritation to skin and eyes. However, there are soluble tungsten compounds, which are classified as toxic, causing damage to the eyes, and being harmful to the aquatic environment. The aim of the study was to amend Standard No. PN-Z-04221-3 determination of soluble tungsten compounds in workplace air using spectrophotometric method with potassium thiocyanate. The amendment was performed because Standard No. PN-Z-04221-3 describes a method in which the quantification is 0.25 mg/m³ , according to European Standard No. EN 482 the quantification of method must be in range of 0.1 – 2 mg/m³ . The method is based on depositing soluble tungsten compounds on a cellulose esters filter and then dissolving them in water. Then tungsten is reduced with tin chloride, after reaction with potassium thiocyanate, tungsten becomes a complex. Tungsten complex should be extracted with isoamyl alcohol and then absorbance should be measured on a UV-Vis spectrophotometer. The tests were performed with the UV-Vis Heλios spectrophotometer by ThermoSpectronic model Beta. The validation requirements of European Standard No. EN 482 were met. With this method soluble tungsten compounds in air can be determined at concentration of 0.1 – 2 mg/m³ . The limit of quantification (LOQ) is 1.875 ng. The overall accuracy of the method is 5.06% and its relative total uncertainty is 22.09%. The method for determining tungsten has been recorded in a form of an analytical procedure (see Appendix). This article discusses problems of occupational safety and health, which are covered by health sciences and environmental engineering.
PL
Nikiel dzięki swoim właściwościom fizykochemicznym jest stosowany do wytwarzania stopów o wysokiej wytrzymałości, odpornych na korozję i temperaturę, o wysokiej rezystancji i kwasoodpornych. Nikiel w postaci drobnego proszku może wywoływać odpowiedź alergiczną w kontakcie ze skórą, udowodniono również właściwości rakotwórcze przy długotrwałym narażeniu na pył niklowy. Zgodnie z proponowaną dyrektywą Parlamentu Europejskiego nr 2020/0262 zaproponowano wartość najwyższego dopuszczalnego stężenia (NDS) w powietrzu na stanowiskach pracy dla frakcji wdychalnej 0,05 mg/m³ , a dla frakcji respirabilnej 0,01 mg/m³ (2020/0262/COD). Celem badań było opracowanie metody oznaczania niklu do oceny narażenia zawodowego w zakresie 1/10 ÷ 2 zaproponowanych wartości NDS. Metoda polega na: pobraniu aerozolu niklu i jego związków zawartych w powietrzu na filtr, mineralizacji filtra w kwasie azotowym(V) i kwasie chlorowodorowym w podwyższonej temperaturze, a następnie oznaczeniu zawartości niklu w próbce z zastosowaniem absorpcyjnej spektrometrii atomowej (AAS) z atomizacją w płomieniu. Metoda oznaczania niklu została przedstawiona w postaci procedury analitycznej, którą zamieszczono w załączniku. Zakres tematyczny artykułu obejmuje zagadnienia zdrowia oraz bezpieczeństwa i higieny środowiska pracy będące przedmiotem badań z zakresu nauk o zdrowiu i inżynierii środowiska.
EN
Nickel due to its physicochemical properties is used to produce high strength, corrosion resistant, temperature resistant, high resistance and acid resistant alloys. Nickel in the form of fine powder can induce an allergic response when in contact with the skin, carcinogenic properties have been proven with long-term exposure to nickel dust. According to the proposed directive of the European Parliament No. 2020/0262, a value of maximum allowable concentration (MAC) in a workplace air in Poland for the inhalable fraction should be at 0.05 mg/m³ and for the respirable fraction at 0.01 mg/m³ (2020/0262/COD). The aim of this study was to develop a method for determining nickel in the range of 1/10 ÷ 2 of the MAC. The method is based on gathering nickel aerosol and its compounds contained in the air on a filter, filter mineralization in nitric acid(V) and hydrochloric acid at elevated temperature then determination of nickel content in the sample using atomic absorption spectrometry (AAS) with flame atomization. The method for the determination of nickel is presented in the form of an analytical procedure, which is included in the appendix. This article discusses the problems of occupational safety and health, which are covered by health sciences and environmental engineering.
EN
Technological progress on the battlefield and the evaluation of the tactics of soldiers' actions entail a change in the philosophy of human resource management in military institutions, and thus a reorientation in the preparation of commanders-leaders to perform this mission. The modern soldier represents a different level of psychophysical resources. The new, more precise and at the same time more complicated to use equipment forces a change in the concept of preparing a soldier to perform tasks. Directing the development of the contemporary battlefield forces the continuous expansion of the cognitive level, both in the general and specialist area. This new approach to soldier formation shifts the centre of gravity in leadership formation to the area of cognitive resource development. This changes the emphasis of training and education towards the theory of social communication underlying the creation of psychophysical resources and issues related to the contemporary psychology of management in the military environment.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.