In this paper, Big Bang-Big Crunch and Particle Swarm Optimization algorithms are combined and used for the first time to optimize airfoil geometry as a aerodynamic cross section. The optimization process is carried out both in reverse and direct directions. In the reverse approach, the object function is the difference between pressure coefficients of the optimized and target airfoils, which must be minimized. In the direct approach, three objective functions are introduced, the first of which is the drag to lift (D/L) ratio. It is minimized considering four different initial geometries, ultimately, all four geometries converge to the same final geometry. In other cases, maximizing lift the coefficient with the fixed drag coefficient constraint and minimizing the drag coefficient while the lift coefficient is fixed are defined as purposes. The results show that by changing the design parameters of the initial airfoil geometry, the proposed hybrid optimization algorithm as a powerful method satisfies the needs with proper accuracy and finally reaches the desired geometry.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.