Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Wetlands technology is one of the main sustainable and successful treatment processes. Similarly, biochar is an organic, effective, and low-cost adsorbent material used for the treatment of diverse wastewaters. The combination between wetland system and biochar, as a media, can greatly enhance the treatment efficiency. The aim of this study is to assess the performance of two horizontal flow constructed wetlands planted with Bacopa monnieri L. for the treatment of household greywater. The objectives were to investigate the raw and treated greywater characteristics, compare the removal efficiency of pollutants by using gravel bed, and biochar-gravel bed, monitor the growth and survival of the plants. Findings indicated that the simulated treatment systems were able to improve all the greywater characteristics. The wetland with biochar enhanced the removal efficiency of biological oxygen demand (BOD5), ammonia (NH3), and other parameters compared with the wetland with gravels alone.
EN
Increasing the demand for potable water, followed by the high quantity of discharged effluents linked with the water scarcity problems has necessitated giving more attention to improving wastewater treatment processes and operations. The constructed wetland has proven to be an excellent green sustainable technique for purification. This study aimed to examine the performance of four experimental free water surface constructed wetlands (FWSCWs) for the depuration of sewage effluents as a secondary treatment stage during winter season conditions. The objectives were to assess the raw and treated wastewater concentrations, evaluate the removal efficiency of chemical oxygen demand (COD), biological oxygen demand (BOD), nutrients, and total suspended solids (TSS) of each treatment line, and compare the impact of plastic rings (biofilm carriers) and Lemna minor L. with the presence of gravel bed on the treatment efficiency and bacterial growth, as well as assess the plant’s adaption and growth. The results showed that all treatment systems improved the water characteristics, and adding biofilm carriers enhanced the efficiency of water purification, especially BOD reduction. The combination of the plants, biofilm carriers, and gravel in the wetland filter significantly enhanced (ρ < 0.05) the treatment efficiency in terms of TSS, COD, BOD, Ammonia (NH3), Nitrates (NO3), and Orthophosphate (PO4) compared to the control treatment system (gravel bed). Plant growth was restricted in the presence of carriers in the system. Further study for examining the system performance under summer conditions, which may improve the nutrient reduction rates by biofilm carriers, is underway.
EN
Sedimentation tanks have a vital role in the overall efficiency of solid particles removal in treatment units. Therefore, an in-depth study these tanks is necessary to ensure high quality of water and increasing the system efficiency. In this work, an experimental rectangular sedimentation tank has been operated with and without a baffle to investigate the system behaviour and effectiveness for the reduction of solid particles. Turbid water was prepared using clay, which was collected from the water treatment plant of Al Maqal Port (Iraq), mixed with clear water in a plastic supply tank. Raw and outflow samples were tested against turbidity after plotting a calibration curve between inflow suspended solids versus their corresponding turbidity values. The key objective was to assess the impact of different flow rates, particle concentrations, heights and positions of the baffle on the system efficiency. Findings showed that the tank performance was enhanced significantly (p < 0.05) with the use of a baffle placed at a distance of 0.15 of tank length with height equal to 0.2 of tank depth. Higher removal efficiency (91%) was recorded at a lower flow rate (0.015 dm3∙s–1) and higher concentration (1250 mg∙dm–3), as the treatment efficiency enhanced by 34% compared with the operation without a baffle. Placing the baffle in the middle of the sedimentation tank produced the worst results. System efficiency for solids removal reduced with increasing baffle height. Further research is required to evaluate the efficiency of an inclined baffle.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.