The kinetics of oxidation of aromatic anils to benzaldehyde and azobenzene by magnesium monoperoxyphthalate (MMPP) has been studied in aqueous acetic acid medium. The low dielectric constant of the medium facilitates the reactivity. It has been found that ionic strength of the reaction has no significant effect on rate. The added acrylonitrile has no effect on the reaction rate indicating the absence of free radical mechanism. The added Mn(II) decreases the rate of the reaction, which indicates the involvement of two-electron transfer. Highly negative ΔS# values indicate a structured transition state. The deviation of Hammett plot is noted and a non-linear concave downward curve is obtained for the anils with substituents in the aniline moiety. The observed break in the log kobs versus σ is attributed to the transition state whereas the non-linear concave upward curve is observed for the substituents in the benzaldehyde moiety and a non-linear concacve upward curve is observed for the substituents in the combination of aniline and benzaldehyde moiety and a suitable mechanism is proposed.
2
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
Wireless communication system design has been a booming topic since the shift into the digital era in the 1990s. In the same period of time, microelectronic technologies have reached new paradigm points as they were going deeper into the sub-micron area. This paper gives an overview of these emerging constraints and enablers, looking through the specific angle of how much this may impact future wireless system design. To this end, the paper analyzes the major requirements from modern digital communication systems, the way it is foreseen to evolve, and how it can be mapped onto the microelectronic roadmap.
With the increasing number of wireless communication standards flexibility has gained more and more importance which has lead to the software defined radio (SDR) concept. However, SDR development has to face many challenges, among them are the questions how SDR systems can be designed to achieve flexibility, architectural efficiency, energy efficiency and portability at the same time. These requirements result in very elaborate architectures and a highly increased design complexity. To cope with such complexity, we proposed an SDR development flow. During the development of such SDR, debugging becomes more efficient on a prototype hardware implementation than on a simulation model. However, error analysis on a prototype suffers from strong limitations like a reduced state visibility. In this paper, an extension to the SDR development flow is presented and successfully applied to an example SDR. It allows for an efficient error analysis with the SDR simulation model by the feedback of stimulus data from the prototype.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.