18Ni300 is widely used in precision moulds, national defence, and other engineering fields due to its high strength and toughness, and because its properties can be greatly changed after heat treatment. In this research, the 18Ni300 cladding layer was fabricated on 18Ni300 substrate using the laser cladding method and a solid solution artificial aging treatment was carried out to analyse its macro morphology and metallographic organization. Comparison of hardness, friction, and wear of cladding layers manufactured by laser cladding and of materials produced by rolling was performed before and after heat treatment. The results show that the solution and artificial aging heat treatment has a significant effect on the microstructure of the cladding layer fabricated by laser cladding. There are obvious differences in the organization and morphology of different parts of the cladding layer before heat treatment; the metallographic organization and morphology of different parts of the cladding layer after heat treatment are the same. The trend of change of material hardness before and after heat treatment is the same in that the cladding layer is greater than the rolled material and the hardness of the material after heat treatment is much greater than the hardness of the material before heat treatment. The hardness and wear resistance of the material after solution and artificial aging heat treatment has been significantly improved, and the impact on the rolled production material of the melted cladding layer manufactured by laser cladding is even greater.
2
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
In order to investigate the material properties of maraging steel laser additive manufacturing, the cladding layers with different overlap rates on the surface of 18Ni300 were prepared by laser cladding technology, and the morphology, microstructure, and hardness of the cladding layer with different overlap rates were analyzed by various means. The results show that the macroscopic morphology of the cladding layer mainly presents three states under different overlap rates, and the change of overlap rate has no effect on the microstructure in the same area of the cladding layer, but does have an effect on the size of the cladding layer. In the end, the optimum overlap rate is 50%, the surface is smooth, the inner is free from defects, the bonding effect is good, and the metallographic structure is even with high hardness. Milling experiments were carried out on the material after laser additive manufacturing, and the surface morphology was observed, confirming a smooth and well-flattened surface with a roughness of 0.342 μm had been obtained. The suitable overlap rate can make the coating surface smoother, reduce the subsequent processing loss, and improve the production efficiency and powder utilization rate while ensuring the coating quality.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.