W związku z rosnącym znaczeniem metanu jako paliwa rozdział mieszaniny CH4 i CO2 jest procesem ważnym z praktycznego punktu widzenia, ponieważ CO2 stanowi częstą domieszkę zarówno naturalnego gazu ziemnego, jak i biogazu. Jedną ze stosowanych w tym celu metod jest technika pressure swing adsorption, bazująca na różnicach w adsorpcji składników mieszaniny. Wśród stosowanych adsorbentów ważne miejsce zajmują węgle aktywne. Ponieważ pomiary doświadczalne adsorpcji mieszanin gazów są czasochłonne i wymagają zaawansowanej aparatury, symulacje komputerowe mogą stanowić prostszą i szybszą alternatywę. W pracy przedstawiono wyniki zastosowania symulacji Monte Carlo w wielkim zespole kanonicznym do modelowania adsorpcji i rozdziału mieszaniny CH4/CO2 na węglach aktywnych. Wykorzystano model węgla zaproponowany przez Harrisa i innych. Analizowano wpływ zarówno systematycznie zmieniającej się porowatości węgla, jak i obecności na jego powierzchni różnych ilości grup tlenowych. Wykazano, że oba czynniki wpływają na rozdział mieszaniny CH4/CO2. Spośród nich to utlenienie powierzchni węgla jest czynnikiem bardziej istotnym. Podczas gdy zwiększenie odsetka małych mikroporów (o średnicy poniżej 1 nm) pozwala na zwiększenie skuteczności rozdziału o kilkadziesiąt procent, to wprowadzenie grup karbonylowych prowadzi nawet do 2-3-krotnego wzrostu wartości równowagowego współczynnika rozdziału. Węgiel optymalny do rozdziału mieszaniny CH4/CO2 powinien nie tylko posiadać odpowiednio małe pory, ale również zawierać możliwie dużo grup powierzchniowych.
EN
The growing importance of methane as a fuel makes the separation of CH4 and CO2 mixtures an important process from a practical point of view. CO2 is a frequent impurity of natural gas and biogas. The pressure swing adsorption (PSA) technique is one of the methods used in practice to separate gas mixtures. This method is based on the differences in adsorption of mixture components. Activated carbons are important adsorbents used in the PSA process. Since experimental measurements of gas mixtures adsorption are time-consuming and require sophisticated equipment, computer simulations may be a simpler and faster alternative. The current work presents the results of the use of Monte Carlo simulations in grand canonical ensemble for modelling the adsorption and separation of CH4/CO2 mixture on activated carbons. The model of carbons proposed by Harris et al. is used. The influence of both the carbon porosity (systematically changing) and the presence of surface oxygen groups is analysed. The results show that the both factors affect the separation of CH4/CO2 mixture. Among them, the oxidation of carbon surface is a far more important factor. While the increase in percentage of the smallest micropores (having a diameter below 1 nm) makes it possible to increase separation efficiency by a few tens of percent, the introduction of carbonyl groups results even in 2-3 times greater value of the equilibrium separation factor. The optimal carbon for separation of CH4/CO2 mixtures should not only contain the appropriate small pores, but it should also have the high concentration of surface functionalities.
Nanorogi węglowe są obecnie jedną z najbardziej interesujących form węgla. W pracy przedstawiono pierwszy atomowy model nanorogów węglowych. Omówiono wyniki symulacji komputerowych adsorpcji Ar i ich porównanie z danymi doświadczalnymi. W dalszej części skonfrontowano teoretyczne i eksperymentalne wyniki rozdziału mieszaniny CH4/CO2. Uzyskane wyniki prowadzą do wniosku, że o ile podczas określania krzywej dystrybucji średnic nanorogów za pomocą badań adsorpcji Ar nanorogi można przybliżać modelem nieskończonej rurki (część stożkowa nie gra roli), o tyle w przypadku rozdziału mieszaniny CH4/CO2 obecność części stożkowej ma kluczowe znaczenie i decyduje o przewadze nanorogów nad nanorurkami węglowymi o tej samej średnicy.
EN
Single Walled Carbon Nanohorn (SWNH) is one of the most interesting new forms of carbon. We present the first atomistic model of SWNH. Next we discuss the results of molecular simulations of Ar adsorption, and the comparison with experimental data. The application of SWNHs for CH4/CO2 mixture separation is also discussed. It is concluded that during calculation of the PSD curve the tip is not important. In the contrary, it plays a crucial role in the separation of considered mixture. In this way, SWNHs are more promising materials than carbon nanotubes and can be applied for CO2 capture from a biogas.
Omówiono wpływ porowatości oraz chemicznej natury powierzchni węgla aktywnego na adsorpcję trzech związków organicznych (benzenu, fenolu oraz paracetamolu) z rozcieńczonych roztworów wodnych w oparciu o obliczenia dynamiki molekularnej (pakiet GROMACS). Wykorzystano model porów szczelinopodobnych oraz model tzw. „miękkiego” węgla aktywnego. Charakteryzują się one stopniową zmianą struktury mikroporowatej. Ponadto w strukturę materiałów węglowych wbudowano różną ilość grup funkcyjnych. Wyniki otrzymanych symulacji komputerowych wykazują jakościową zgodność z pomiarami eksperymentalnymi. I tak na przykład zaobserwowano spadek adsorpcji dla paracetamolu w porównaniu z adsorpcją benzenu. Ponadto wyniki obliczeń komputerowych wskazują, że na proces adsorpcji związków organicznych mają wpływ zarówno porowatość, jak i chemiczna natura materiału węglowego (zawartość tlenu). Ten drugi z czynników decyduje o mechanizmie blokowania porów i związany jest ze zwiększeniem gęstości wody w pobliżu grup chemicznych (tworzenie klastrów). Efekt blokowania porów zależy także od rozmiaru porów i przestaje odgrywać rolę dla porów o szerokościach większych niż 0,68 nm. W konsekwencji cząsteczki adsorbowanych związków organicznych nie mogą wnikać w głąb struktury materiału węglowego, ale adsorbują się na powierzchni zewnętrznej porów w pobliżu ich wejść.
EN
MD simulation studies (GROMACS package) showing the influence of porosity and carbon surface oxidation on adsorption of three organic compounds (i.e. benzene, phenol, and paracetamol) from aqueous solutions on carbons were reported. Based on a model of slit-like pores and “soft” activated carbons different adsorbents with gradually changed microporosity were created. Next, different amount of surface oxygen groups was introduced. We observe quantitative agreement between simulation and experiment, i.e. the decrease in adsorption from benzene down to paracetamol. Simulation results clearly demonstrate that the balance between porosity and carbon surface chemical composition in organics adsorption on carbons, and the pore blocking determine adsorption properties of carbons. Pore blocking effect decreases with diameter of slits and practically vanishes for widths larger than c.a. 0.68 nm. Moreover, adsorbed molecules occupy the external surface of the slit pores (the entrances) in the case of oxidized adsorbents.
Praca przedstawia krótki przegląd literaturowy z zakresu zastosowania nanostrukturalnych materiałów węglowych jako potencjalnych kontenerów dostarczania leków czy swoistych markerów. Nanorurki węglowe ze względu na swoje specyficzne właściwości mogą z powodzeniem zostać zastosowane w nowoczesnych nośnikach leków III generacji. Badania te niosą ze sobą wiele nadziei, ale także i obaw, gdyż wszystko, co nowe, nie do końca poznane, może zaskoczyć badaczy. Nadzieje, jakie budzi nanotechnologia w medycynie, a w szczególności w onkologii i diagnostyce medycznej, są tak ogromne, że rzesze badaczy na całym świecie nie zrażają się ani wielkimi kosztami, ani sceptycznym podejściem tzw. ostrożnych naukowców do pracy nad udoskonaleniem nanocząstek, aby były jak najbardziej kompatybilne z organizmem ludzkim, nietoksyczne i biodegradowalne. Gdyby udało się na szeroką skalę rozpowszechnić terapie onkologiczne przy zastosowaniu nanocząstek, wielu chorych zostałoby uratowanych przy minimalnych skutkach ubocznych zastosowanego leczenia.
EN
The paper presents a brief literature review of the scope of nanostructural carbonaceous materials as potential drug containers or specific markers. Carbon nanotubes, due to their specific properties, can be successfully used in modern drug carriers of the 3rd generation. These studies bring a lot of hope, but also some fear because everything new, not fully understood, may surprise researchers. The hopes aroused by using the nanotechnology in medicine, particularly in oncology and medical diagnostics, are so huge that the numbers of researchers around the world bounces back neither at great expense, nor the so-called skepticism of so-called conservative researchers. It is still necessary to work over the improvement of nanoparticles, to be as compatible as possible with the human body, non-toxic and biodegradable. If new technologies in cancer therapies could be widely disseminated, many patients would have been saved, with minimal side effects of the treatment.
Metoda „hot-melt deposition” (HMD) cieszy się coraz większym zainteresowaniem, o czym świadczą liczne prace dotyczące preparatyki nośników leków otrzymywanych na bazie polimerów. Osadzanie leków metodą HMD ma na celu rozproszenie medykamentu w homogeniczny sposób w stosowanej matrycy. Metoda ta umożliwia wykorzystanie trudno lub słabo rozpuszczalnych leków w preparowanych układach uwalniania leków. Przedstawione wyniki systematycznych badań adsorpcji paracetamolu na zamkniętych, komercyjnie dostępnych i niemodyfikowanych nanorurkach węglowych, a także wybranych węglach aktywnych z wykorzystaniem analizy termicznej, adsorpcji metodą statyczną i dynamiczną, symulacji metodą dynamiki molekularnej pozwoliły potwierdzić, iż paracetamol w przestrzeniach międzyrurowych i w porach węgli aktywnych występuje w postaci nanoagregatów. W niniejszej pracy przedstawiono także wyniki badań osadzania paracetamolu na wybranych materiałach węglowych metodą HMD poprzez wygrzewanie w wysokich temperaturach. Zastosowanie powyższej metodyki umożliwiło otrzymanie nowego rodzaju nośnika leku. Nowe układy charakteryzowały się różną szybkością procesu uwalniania medykamentu, która zależała od typu węglowej matrycy i parametrów procesu. Metoda „hot-melt” okazuje się perspektywiczną metodą otrzymywania nowych skutecznych i efektywnych układów uwalniania leków z wykorzystaniem nanorurek węglowych jako nośników.
EN
A method called hot-melt deposition (HMD) has increasingly been reported in the pharmaceutical literature as a means of preparing of polymer drug deliver vehicles. HMD has been widely applied to disperse drugs in a matrix down to the molecular level. This tech nology gives new hope to the glass or solid solution approach as a delivery system for poorly soluble drugs. We discussed the results of systematic studies of paracetamol adsorption on closed, commercially available, unmodified carbon nanotubes and some active carbons. The results of thermal analysis, static and dynamic adsorption measurements, and molecular dynamics simulation lead to suggestion about the formation of paracetamol nanoaggregates in the interstitial spaces between nanotubes and in the pores in active carbons. Next we illustrate that the behavior of adsorbed paracetamol during heating leads to the creation of a new drug delivery system. This new system has different rate of drug deposition which depends of the type of applied carbons matrix as well as the parameters of process. Moreover, we show that the creation of nanoagreggates can be successfully applied in new drug delivery vehicles. Summing up, it should be pointed out that carbon nanotubes can be very promising materials for preparation of new drug delivery systems.
6
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
We present first MD simulation results of C60 adsorption inside a single-walled carbon nanohorn. The assumed carbon nanohorn model and the values of the force field parameters lead to relatively good agreement between simulation and experiment. We show that the confinement of water and ethanol inside a carbon nanohorn strongly changes the properties of confined liquids leading to a decrease in the number of hydrogen bonds, and diffusion coefficients in comparison to bulk. The appearance of C60 inside the nanohorn leads to further decrease in diffusion coefficients of confined solvents.
7
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
The development of models of activated carbons is presented. We start from historical review of the concept of BSU (Fig. 1) [4, 5, 8-12] and models based on microcrystallites (Figs. 2 and 3). We show the most popular methods of investigation applied in the field of carbon chemistry (Tab. 1). The structure of common surface acidic and basic functional groups containing oxygen are discussed (Figs. 5 and 7), taking into account the basicity of carbon ?-electrons forming the structure. Next, we show how carbon porosity can be modelled. The basic computer simulation methods applied for recovering of the structure and studying of adsorption on carbons are discussed (mainly GCMC and MD). Here also DFT and some recently proposed new Monte Carlo-type methods are shortly discussed. Next the concepts of modelling of carbon porosity are presented (Fig. 8). First models of ideal pores are discussed showing the approach of infinite and finite carbon pores. Next we discuss the concepts of finite graphitic pores and the methods of modelling. Based on literature we divide current construction methods of models of carbons. Discussing of the current approaches we start from the models of Bakaev [104], Segarra and Glandt [105], Dahn et al. [107], and Seaton et al. [108]. Next we discuss in detail the newest models proposed by Biggs et al. [53-57] (Figs. 9 and 10), Do et al. [58-61] (Figs. 11 and 12), Gubbins et al. [39, 62-69] (Fig. 13) and Harris et al. [8, 12, 70-77] (Figs. 15 and 16). All mentioned models are discussed with some nuances. Also some less popular models are mentioned, including those proposed by Acharya et al., Gavald et al., Cascarini de Torre et al., Smith and Kumar et al. Since carbon surface functionalities are discussed in the paper finally some results obtained from molecular simulations of adsorption on carbons are presented especially the results of simulations of water adsorption. Eventually, some aspects for future studies are given.
Omówiono wyniki rocznych badań procesu sorpcji na węglu aktywnym Carbon F300 (Chemviron), przeprowadzonych w stacji uzdatniania wody w Toruniu, ze szczególnym uwzględnieniem badań struktury porowatej węgla. Pilotowy układ oczyszczania wody (powierzchniowa z Drwęcy i infiltracyjna z ujęcia "Jedwabno") składał się z ozonowania wstępnego, koagulacji, filtracji pospiesznej (antracyt-piasek), ozonowania wtórnego oraz sorpcji na węglu aktywnym. Badania struktury porowatej węgla aktywnego podczas rocznej eksploatacji filtru sorpcyjnego wykazały, że największe zmiany porowatości węgla wystąpiły w początkowym okresie pracy złoża, po czym pojemność sorpcyjna węgla nie ulegała już istotnym zmianom. W oparciu o wyniki badań porozymetrycznych węgla aktywnego oraz efektywność usuwania związków organicznych z wody zaproponowano mechanizm opisujący zjawiska przebiegające podczas sorpcji zanieczyszczeń na węglu aktywnym.
EN
The object under study was the Water Treatment Plant of Lubicz (in the locality of Toruń), receiving riverine water from the Drweca and infiltration water from the Jedwabno intake. The investigations (carried out on a pilot scale) covered the time span of 15 October 1999 to 30 October 2000 and involved the following treatment train: preozonation, coagulation, rapid filtration (anthracite-sand bed), ozonation, and sorption on an activated carbon bed (Carbon F300 made by Chemviron). Low-temperature nitrogen adsorption, thermogravimetry in helium, apparent and true density measurements, and mercury porosimetry were carried out with virgin and matured activated carbon samples. The activated carbon was also investigated for the variations in some physicochemical parameters (pore size distribution, sorption capacity), as well as for the efficiency of removing TOC and bacterial counts. The most noticeable changes in the porosity of the carbon were observed at the initial stage of bed operation. On the basis of experimental data, the mechanism governing the adsorption of dissolved organic matter was proposed.
9
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
A new "adsorption stochastic algorithm" (called ASA) is proposed for solving the unstable linear Fredholm integral equation of the first kind. The developed algorithm was applied for the calculation of the pore size distribution of activated carbons from single adsorption isotherms assuming different forms of the kernel (i.e. Dubinin and Radushkevich (DR) and/or Nguyen and Do (ND)) of a linear Fredholm integral equation of the first kind. The results obtained by ASA are compared with obtained applying, developed by Provencher, the advanced regularization CONTIN algorithm, advanced evolutionary algorithm GABI written by Arabas and modified by Kowalczyk, and simple evolutionary algorithm based on the mutation strategy labeled SASA. Additionally, the ASA results obtained by solving the integral equation with the ND kernel are compared with the results obtained by regularization solution of the integral equation with density functional theory (DFT) local isotherms as a kernel. It is shown that the developed ASA algorithm always provides stable and very similar results to the Tikhonov regularization method. Moreover, the ASA computations obtained for the ND local isotherms as a kernel are very similar to the results obtained by the most sophisticated regularization DFT software.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.