Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!

Znaleziono wyników: 4

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Schemat ideowy układu elektronicznego może być postrzegany jako zbiór wzajemnie połączonych komponentów elektronicznych tworzących pewien graf połączeń. Graf ten jest strukturą, której topologia może być odczytana i przeanalizowana. Automatyczna weryfikacja formalna schematu ideowego ma na celu wykrycie nietrywialnych błędów (związanych ze strukturą tegoż schematu), popełnionych przez projektanta w trakcie opracowywania schematu. Błędy te są efektem pominięcia lub niewłaściwego wykorzystania elementów elektronicznych w typowych podukładach (blokach funkcjonalnych). W artykule opisano realizację komputerowego narzędzia wspomagającego proces automatycznej weryfikacji formalnej, począwszy od określenia sposobu zapisu schematu, przez integrację z komercyjnymi narzędziami EDA (ang. Electronic Design Automation) aż po określenie algorytmów identyfikujących podobwody. Opracowane narzędzie umożliwia dokonanie weryfikacji schematu ideowego już w bardzo wczesnych etapach procesu projektowego, co znacząco redukuje liczbę pętli w procesie projektowym, wpływając korzystnie na końcowy koszt opracowania produktu oraz skracając czas niezbędny do przygotowania urządzenia do produkcji.
PL
A schematic diagram can be interpreted as set of components connected together to build a network. The network is a structure whose topology can be read and analyzed. The automatic formal verification aims at detecting some non-trivial mistakes, made by an electrical engineer, connected with the structure of schematic, building blocks and typical functional sub circuits. The paper presents the approach for realization of an automatic formal detection tool starting from the definition of schematic structure, through connectivity with a schematic-capture tool, to a sub-circuit identification algorithm.
EN
This paper shows the comparison between the simulative evaluation and laboratory measurements of RF parameters in Remote Keyless Entry (RKE) receiver. It is produced in two variants: 315 MHz and 433 MHz (ISM band). The parameters that are evaluated are Sensitivity and Noise Figure. The standard procedure of Noise Figure evaluation assumes the usage of RF dedicated simulator. Unfortunately the requirements connected with large volume production - especially the statistical manner - are omitted in models prepared for RF simulators. Authors shows the methodology that allows to evaluate RF parameters with high precision using the standard SPICE - like simulator which is de facto world standard. Analyses are made using PCB extraction data in connection with standard SPICE - based models. The difference between the simulative based values and laboratory measurement values is only 2 dB.
PL
W artykule przedstawiono porównanie wybranych parametrów otrzymanych z symulacji odbiornika RKE (ang. Remote Keyless Entry), pracującego w paśmie ISM na częstotliwościach 315 MHz i 433 MHz, z pomiarami laboratoryjnymi. W ramach porównania skupiono się na analizie dwóch czynników: czułości i poziomie szumów własnych układu odbiorczego. W typowym podejściu, do wykonania takiego zadania używa się specjalizowanych symulatorów dedykowanych do analizy obwodów wielkiej częstotliwości. Niestety, wymagania techniczne związane z produkcją wielkoseryjną - a w szczególności zagadnienia statystyczne - są często pomijane w modelach przygotowywanych dla symulatorów w.cz. Autorzy pokazują, że możliwe jest wykonanie bardzo dokładnej symulacji w oparciu symulatory nie dedykowane do analizy w.cz. Szczególnie przy użyciu symulatora typu SPICE będącego w zasadzie światowym standardem. W analizach wykorzystano parametry połączeń wyekstrahowane z płytki PCB, a także typowe modele stosowane w symulatorach typu SPICE. Różnice między metodami symulacyjnymi i pomiarami laboratoryjnymi są na poziomie zaledwie 2 dB.
PL
Schemat ideowy układu elektronicznego jest zbiorem wzajemnie ze sobą połączonych elementów elektronicznych tworzących pewną sieć. Sieć ta jest strukturą, która może być w automatyczny sposób odczytywana analizowana. Automatyczna weryfikacja formalna schematu ideowego ma na celu wykrycie nietrywialnych błędów popełnionych przez projektanta w trakcie opracowywania schematu ideowego. W ramach analizy sprawdzana jest poprawność struktury i zgodność wartości wybranych parametrów tworzonego schematu w odniesieniu do - zdefiniowanych wcześniej - typowych bloków funkcyjnych. W artykule przestawiono przykładową realizację automatycznej weryfikacji formalnej przeprowadzaną w celu dokonania analizy klucza tranzystorowego począwszy od definicji okładu klucza tranzystorowego, przez sposób dostępu do schematu, po automatyczną identyfikację bloków funkcyjnych.
EN
Schematic diagram can be interpreted as set of components connected with themselves together to build a network. The network is a structure, which topology that can be red and analyzed. Automatic formal verification aims to detect some non-trivial mistakes, made by electrical engineer, connected with structure of a schematic, building blocks and typical functional sub-circuits. The article presents approach to realize automatic formal detection tool starting from definition of schematic structure, though connectivity with schematic-capture tool, to sub-circuit identification algorithm.
EN
Rapidly increasing complexity of electrical designs in automotive applications leads to growing role of system level modeling and simulation techniques in the design verification. This kind of verification requires integration of models describing system behavior at various fidelity levels: from behavioral control blocks to single device electrical models. Growing interest in power electronics applications due to hybrid vehicles developments has become another challenge for modeling and simulation engineers. This papers describes combination of various modeling techniques - from state diagrams to transistor level modeling - which allow time efficient and accurate representation of both steady-state and transient response (including self-heating effects) of a complex power electronics system in automotive applications.
PL
Gwałtownie rosnąca złożoność układów elektronicznych stosowanych w układach elektroniki samochodowej wymaga stosowania nowoczesnych technik modelowania i symulacji. Model urządzenia elektrycznego musi zapewniać wymaganą dokładność i jednocześnie gwarantować akceptowalny czas niezbędny do przeprowadzenia symulacji jego działania. Pociąga to za sobą konieczność modelowania na różnych poziomach abstrakcji, począwszy do modelu na poziomie fizycznym, poprzez model na poziomie połączeń między podstawowymi blokami funkcyjnymi, po model na poziomie systemowym. Dzięki temu można opracować bardzo wydajny i dokładny model symulacyjny wielofazowej przetwornicy prądu stałego uwzględniający zjawiska związane ze zmianą parametrów układu związane z nagrzewaniem się wybranych elementów.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.