Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The utilization of readily accessible natural fibres in lightweight foamed concrete (LWFC), which is already a widely used building material, can have a substantial positive impact on the environment. Therefore, the mechanical characteristics might be increased by using a correct mix proportion of fibre-reinforced LWFC. Innovative LWFC-agave fibre (AF) composites were created in this experiment. In order to get the best mechanical qualities, this investigation set out to establish the correct weight fraction of AF to be added to LWFC. Two LWFC densities of 750 and 1500 kg/m3 were produced with the addition of several weight fractions of AF, precisely 0.0%, 1.5%, 3.0%, 4.5%, 6.0%, and 7.5%, were used. To establish the mechanical characteristics of LWFCAF composites, flexural tests, tensile strength tests, axial compression tests, and ultrasonic pulse velocity tests were carried out. Test results revealed that the combination of LWFC together with a weight fraction of 4.5% of AF exhibited superior mechanical properties. Beyond 4.5% of AF’s weight fraction, the mechanical properties started to deteriorate. This study gives insight and crucial data on the mechanical characteristics of LWFC-AF composites therefore it will enable future researchers to explore other properties of LWFC reinforced with AF.
EN
The consumption of foamed concrete (FC) in conjunction with the incorporation of natural fibre is recognized as an outstanding effort in promoting sustainable practices. This effort is aimed at reducing greenhouse gas emissions and the impact it leaves behind on the environment. The goal of this experiment is to discover the viability of incorporating raw bamboo fibre (BF) into the fabrication of 1000 kg/m3 density FC. The shrinkage, flexural, compressive, and tensile strengths of the material were the four characteristics that were considered throughout the analysis. The weight fractions of BF that were utilized were 0.0%, 0.1%, 0.2%, 0.3%, and 0.4% respectively. According to the results, the FC-BF composites’ drying shrinkage, compressive, flexural, and tensile strengths were best achieved when 0.3% BF was present. This was caused by the BF’s adhesion to the cementitious matrix of the FC. Additionally, BF functioned as an anti-micro crack that prevented FC from developing internally induced microcracks and cracks.
EN
Researchers are increasingly becoming fascinated by the possibilities of utilizing natural fibre, which is a byproduct of production processes, as an addition in concrete. This fibre exhibits a low density and is amenable to chemical changes. The primary aim of this research study is to examine the influence of agave cantula roxb. fibre (ACRF) in low-density foamed concrete (FC) after being subjected to different doses of alkali treatment using sodium hydroxide (NaOH). Various weight fractions of treated ACRF were employed in the FC mix, namely 0% (as the control), 1%, 2%, 3%, 4%, and 5%. FC with a density of 1060 kg/m3 was produced and subsequently tested. The three types of strength properties that have been evaluated and analysed included flexural, tensile, and compressive strengths. The findings from this study have revealed that the inclusion of 3% of treated ACRF in FC yields highly favourable results in relation to strength properties. The use of treated ACRF improves the FC’s strength characteristics, particularly its bending and tensile strength, by bridging microscopic cracks and filling up gaps. It is noteworthy to emphasize that accumulation and unequal dispersion of ACRF are possible if the weight fraction of ACRF applied above the optimal value of 3% which led to decrease in FC’s strength properties. This exploratory work will lead to a better understanding of the potential applications of treated ACRF in FC. It is critical to encourage the long-term development and implementation of FC products and technology.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.