Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The Covid 19 (coronavirus) pandemic has become one of the most lethal health crises worldwide. This virus gets transmitted from a person by respiratory droplets when they sneeze or when they speak. According to leading and well‐known scientists, wearing face masks and maintain‐ ing six feet of social distance are the most substantial protections to limit the virus’s spread. In the proposed model we have used the Convolutional Neural Network (CNN) algorithm of Deep Learning (DL) to ensure efficient real‐time mask detection. We have divided the system into two parts—1. Train Face Mask Detector 2. Apply Face Mask Detector—for better understanding. This is a real‐ time application that is used to discover or detect the person who is wearing a mask at the proper position or not, with the help of camera detection. The system has achieved an accuracy of 99% after being trained with the dataset, which contains around 1376 images of width and height 224×224 and also gives the alarm beep message after the detection of no mask or improper mask usage in a public place.
EN
Nowadays, violence has a major impact in society. Violence metrics increasing very rapidly reveal a very alarming situation. Many violent events go unnoticed. Over the last few years, autonomous vehicles have been used to observe and recognize abnormalities in human behavior and to classify them as crimes or not. Detecting crime on live streams requires classifying an event as a crime or not a crime and generating alerts to designated authorities, who can in turn take the required actions and assess the security of the city. There is currently a need for this kind of effective techniques for live video stream processing in computer vision. There are many techniques that can be used, but Long Short-Term Memory (LSTM) networks and OpenCV provide the most accurate prediction for this task. OpenCV is used for the task of object detection in computer vision, which will take the input from either a drone or any autonomous vehicle. LSTM is used to classify any event or behavior as a crime or not. This live stream is also encrypted using the Elliptic curve algorithm for more security of data against any manipulation. Through its ability to sense its surroundings, an autonomous vehicle is able to operate itself and execute critical activities without the need for human interaction. Much crowd-based crimes like mob lynching and individual crimes like murder, burglary, and terrorism can be protected against with advanced deep learning-based Anamoly detection techniques. With this proposed system, object detection is possible with approximately 90% accuracy. After analyzing all the data, it is sent to the nearest concern department to provide the remedial approach or protect from any crime. This system helps to enhance surveillance and decrease the crime rate in society.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.