Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Processes of water purification from phosphates using a low-pressure reverse osmosis membrane were studied. It was shown that the concentration of phosphates in the permeate largely depends on their initial concentration in the water and increases along with the degree of permeate selection. It was established that when using the Filmtec TW3–1812–50 membrane for phosphate concentrations up to 20 mg/dm3, their concentration in the permeate does not exceed 2.5 mg/dm3 with a degree of permeate selection up to 90% when cleaning solutions in distilled and artesian water. This value is below the permissible level for drinking water. When the concentration of phosphates increases to 100 and 1000 mg/dm3, their content in the permeate increases sharply to the values significantly higher than the permissible level in both drinking and wastewater. When sodium orthophosphate was added to artesian water, the effectiveness of its purification on this membrane with respect to chlorides, sulfates, hardness ions, and hydrocarbons was high. This indicates that the cartridges with these membranes can be used both in industrial installations and in households for further purification of artesian and tap water to drinking water quality.
EN
The processes of water purification with increasing selection of permeate were studied, considering selectivity and productivity of membranes, dynamics of changes of contents of components in the concentrate. It is shown that when chlorides and sulfates are removed from water, the increase in their content in the concentrate does not differ practically from the measured and calculated values. At the same time, the nature of dependences on the change in hardness, concentration of calcium and magnesium ions, alkalinity obtained experimentally differ significantly from the dependences obtained by theoretical calculations at permeate selection levels of > 70%. А significant difference in the determined and calculated concentrations of hardness ions in the concentrates was observed after hardness values greater than 30–40 mg-eq/dm3. This indicates the partial removal of hardness ions and carbonates from the concentrates, which may be the reason for the formation of deposits on the membrane. Permissible values of the degree of permeate selection were determined, at which there is no intense deposition of carbonates and hydroxides of hardness ions on the membrane. With the initial water hardness > 8 mg-eq/dm3, the degree of permeate selection could reach 60–70% without the risk of sedimentation on the membrane. Effectiveness of the low-pressure reverse osmosis membrane in the purification of mine water with an increased level of mineralization and hardness was determined. A significant difference between the determined and calculated hardness in concentration was observed already at the degree of permeate selection of 22–33%.
EN
The process of extracting nitrates from water by the methods of reverse osmosis and ion exchange was investigated in the paper. In the formation of reverse osmosis, low-pressure membranes were used, and in ion-exchange processes, highly alkaline anionite AB–17–8 was applied in salt form. The dynamics of changes in the concentration of nitrates in the permeate and the concentration with an increase in the degree of permeate selection from 9 to 90% at initial nitrate concentrations of 18, 50 and 100 mg/dm3 were determined. The indicators of selectivity and productivity of membranes were calculated depending on the degree of permeate selection. It was shown that the low-pressure reverse osmosis membrane is characterized by low selectivity values at high productivity values in the selected part of the nitrate concentration. It was established that the ion exchange method is significantly more effective than reverse osmosis in removing nitrates from water. It ensures the reduction of nitrate content in purified water to a value of less than 1 mg/dm3 when the degree of their extraction is reached at the level of 99%. As the ionite is saturated with nitrates, the efficiency of their extraction decreases. Anionite sorbs nitrates effectively enough, being both in the chloride mixture and in the sulfate form. Nitrates are effectively desorbed by 2H solutions of sodium chloride and sodium or ammonium sulfate.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.