Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 7

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
In this study, the heating and cooling conditions of the greenhouses in Antalya were examined and suggestions were made for solutions of the problems that emerged. The Simple Random Sampling Method was used in determining the number of enterprises to be surveyed. The number of enterprises to be surveyed was determined as 246 with a 90 % confidence limit and 10 % error rate. It was determined that the greenhouses enterprises surveyed were heating at 96.34%. It has been determined that the most commonly preferred type of heater in the region is the stove and that the stove is heated only to protect the product from frost damage. In accordance with the data obtained from the research area, it was determined that one stove was used for 1000 m2 greenhouse floor area. It has been determined that 92.68% of the surveyed greenhouse enterprises are trying to reduce the excess temperature inside greenhouse by natural ventilation. It was determined that both the sidewall and roof ventilation were made at 45.93% of the greenhouse enterprises where examined in the research area. It has been determined that the ratio of ventilation area to greenhouse floor area changes between 10 and 15 in 32.52% of greenhouse enterprises and this ratio changes between 15 and 20 in 41.46%. As a result, the heating and cooling properties and problems encountered of the greenhouse enterprises in the study area were determined and necessary precautions to be taken.
EN
As a result of the increase in the world population and the decrease in agricultural land, the need for food increases every day. Nowadays, breeding studies are carried out to increase the yield of plants to get more products from the same area. Furthermore, controlled production areas are created by optimizing climatic conditions and the continuity of production is ensured. It is called greenhouse, where production can be carried out throughout the year and the indoor temperature and humidity conditions can be controlled. Nowadays, greenhouses are now functioning as an industrial enterprise. However, greenhouses need to comply with the principles of quality production, efficient income growth and physical environmental protection. Almost all of the plant production in greenhouses in Turkey is done in the Mediterranean region, but in the Southeastern Anatolia Region, it is done in a very limited greenhouse area. The increase of protected agricultural areas in the Mediterranean region and the fact that the production volume cannot reach a certain limit makes it necessary to investigate alternative protected production areas. In this study, climate conditions of Antalya province and climate data of four provinces of the Lower Euphrates basin are compared with each other and statistically compared. As a result of, differences have been found between Antalya province and the provinces in the Lower Euphrates basin in terms of minimum, maximum, and average temperatures. However, there is no difference between the provinces in the basin except for Gaziantep in terms of climatic conditions. Therefore, it has been determined that Gaziantep province is not suitable for greenhouse cultivation. However, it has been concluded that if greenhouse cultivation is performed in this province, it is appropriate to perform cultivation in the areas where alternative energy sources can be used. It has been concluded that in the case that heating costs are reduced using alternative energy sources, Şanlıurfa and Kilis provinces are climatologically suitable for greenhouse cultivation and Adıyaman province is partially suitable for it.
EN
Information on the energy needs of agricultural production activities carried out in any region can be obtained in advance. Many methods are used for this purpose. One of them is a degree-hour method. Kumluca district of Antalya province where pepper cultivation is done intensively was chosen as a study area. The growers prefer autumn production of pepper plants inside the greenhouses in this region. Production starts in early October and last until June. The long-term (1960-2015) thermometer temperatures in the study area were obtained from the Turkish State Meteorological Service. In this study, by using only meteorological data, during each growing season (planting, flowering, pollination, fruit ripening and harvesting) were obtained degree-hour values for the pepper plant and evaluated with Student-t test. Regression coefficients were obtained by correlating heating and cooling degree-hour values with different temperature values which are recommended during the vegetative growing season for the pepper plant. Regression analysis was performed between obtaining heating and cooling degree-hour values (dependent variable) and annual mean heating and cooling degree hour values (independent variable) which are suggested basic temperature values. In conclusion, the regression coefficients were determined as 0.99 for out of greenhouse heating degree-hour and as 0.90-0.99 for cooling degree-hour, respectively. Heating and cooling-hour values were found between 0.96-0.88 and 0.99-0.87, respectively. It was determined that there are very high correlations in the positive direction. According to different growing seasons of pepper, knowing how much less or more of heating and cooling degree-hour values is needed, one can give information in advance in terms of energy consumption or usage. Areas or regions where less energy is to be used can be determined in terms of agricultural production to be done in any region.
EN
Drought, water scarcity and climate changes are very important threats for agriculture on a global basis. Remote Sensing (RS) is accepted as a technique to collect data and determine water stress indices. Water Stress Indices (WSI) are useful tools to prevent drought and determine irrigation scheduling. The water stress indices are primarily identified as the Crop Water Stress Index (CWSI) and the Water Deficit Index (WDI). The effect of soil background is major problem to establish CWSI especially during early growth stage measurements of canopy temperature (Ts). Hence, WDI is a better index when it comprised with CWSI because of Ts. CWSI and WDI can be determined by two different techniques. These are determined by using measured by using traditional components to collect data and estimated methods by applying RS components to collect necessary data. Estimated method has many advantages when this method compared with measured method. However, estimated method needs some RS components which are infrared gun (IR), sling psychrometer, Spectro radiometer. With the help of these tools, the necessary data are obtained and WDI is determined. By using Spectro radiometer vegetation indices are defined. Among the many vegetation indices, the Normalized Difference Vegetation Index (NDVI) is mostly used one. By using NDVI determination of vegetation cover is easy and accurate technique to establish WDI. Establishing these both stress indices with less fieldwork and by saving money, time and labor conveys the necessary information for agriculturists using remotely sensed data especially for large agricultural fields.
EN
An ideal broiler house should be designed to minimize the effects of weather changes and to keep indoor conditions at the comfort temperature of the animals. In this case, this should be done with minimum cost and possible lowest operating costs. Degree-day methods are used in order to have knowledge of the energy need of any structure. With this method, the measured values or meteorological data can be used to give information about the heating and cooling energy quantities of structures. Depending on the climate change in recent years, the changes need to be examined that have taken place in order to provide optimum comfort in animal barn. Isparta province and districts were selected as the study area. The longterm average daily temperature values are used from meteorological stations of the selected region. The heating and cooling degree day values were calculated for selected balance temperatures in broiler breeding. Linear Regression Analysis and Spearman Rank Correlation Test were conducted to determine the changes of these values due to climate change. In conclusion, it was determined that there were statistically significant trends at 5% significance level in Egirdir (21°C), Isparta (31-29-25 and 23°C), Kasimlar (18°C), Senirkent (31-29-25-23 and 21°C), Sutculer (all selected balance temperature values) and Yalvac (31-29-25-23 and 21°C) in terms of heating degree-day values, and in Atabey (29-25-23-21 and 18°C), Barla (25-23 and 21°C), Isparta (23-21 and 18°C), Senirkent (29- 25-23-21 and 18°C), Sutculer (29-25-23-21 and 18°C), Sarkikaraagac (25-23-21 and 18°C), Uluborlu (25-23-21 and 18°C) and Yalvac (25-23-21 and 18°C) in terms of cooling degree-day values. As a result, it has been concluded that more energy consumption will be a concern for heating and cooling of the broiler house that will be built in the province of Isparta.
EN
Degree-day values can be calculated using climatic data. Thus, seasonal, monthly, daily and hourly energy requirements for heating and cooling in buildings can be calculated. The effect of outside ambient temperature can be determined by means of the degree-day method in determining the basic temperature values in buildings. The altitude and latitude affect significantly the temperature distribution in the Earth. Thus, the latitude and altitude values are required to determine the degree hour values. This study was taken in 9 provinces located in the Southeastern Anatolia Region (SAR). The annual outdoor dry-bulb thermometer temperatures for a long period of nine provinces in the SAR were obtained to determine heating and cooling degree hour values according to the six different base temperatures. According to the suggested six different base temperature values, the cumulative long-term annual heating degree-hour (HDH) value was 50862 in total for Gaziantep province. The lowest cumulative long-term annual heating degree-hour value took place in Sanliurfa province as 39638. Also, the highest total cooling degree-hour (CDH) value took place in Sanliurfa province as 10886 degree-hour value and the lowest value took place in Sirnak province as 3909. It was determined that there was not an exact linear or monotonous relationship between HDH and CDH values and altitude, latitude and longitude values. However, although it was seen that the relationship of CDH values with the altitude was not a formal linear or monotonous relationship, it was determined that CDH values decreased linearly together with the increasing altitude values when the values were examined.
EN
The increasing world population renders the developed energy sources of the industry insufficient, and existing energy sources become expensive. It is anticipated that the energy deficit will further increase in the future. Scientists are in search of new energy sources in the face of this fact. It is considered that the cattle breeding potential of the Southeastern Anatolia Region may increase both as a result of state supports and arable lands. Determining the potential biogas energy production areas of the Southeastern Anatolia Region in terms of cattle breeding is possible with the use of today's knowledge and technology. With this study, it was aimed to determine the obtainable biogas energy fields and the current situation for the provinces in the Tigris Basin (Diyarbakir, Mardin, Siirt, Batman, Sirnak). The number of cattle in the basin for 2015 was benefited from in this framework. The boundaries of the research provinces were drawn using ARCMAP 10.0 software by making geographical corrections. In order for the inquiries of each province to be made independently from other provinces, all boundaries were divided on the basis of provinces, districts and villages as separate layers. These data constitute the main material of the study. The number of cattle was entered into the database of Geographical Information System (GIS), and the obtainable potential biogas energy production areas were determined considering the amount of waste that will be left in the environment by cattle. The finding that a total of 2809939 tons of annual wet manure can be obtained in the study area was obtained. It was determined that a total of 1175913 MJ biogas energy amount can be obtained per year from this wet manure. Further- more, the project created with a cartographic base, the geographical correction of which was made, was assessed in accordance with the purpose of this study in the database, and the areas that are suitable, non-suitable or partially suitable for biogas energy production areas were determined.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.