This paper reviews the 5th-best solution and results of the FedCSIS 2024 Data Science Challenge, which aimed to predict stock trends using financial indicators. It details the preprocessing, modelling, and tuning approaches and demonstrates, as well as the methods and techniques used to address the prediction problem effectively. Subsequently, the results of different experiments, including hyperparameter optimization on preprocessing steps and switching between different prediction targets, could be compared to manual experiments. Overall, a manually experienced model could be found to outperform hyperparameter-tuned pipelines.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.