Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!

Znaleziono wyników: 1

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
In the era of Industry 4.0, deploying highly specialised machine learning models trained on unique and often scarce datasets is an attractive solution for advancing automated quality control and minimising production costs. Therefore, the main aim of this research is to evaluate the capabilities of three deep learning models (ResNet-18, ResNet-50 and SE-ResNeXt-101 (32 × 4d)) in the identification of surface defects in forged products. Leveraging advanced photography techniques, including studio lighting and a shadowless box, high-quality images of complex product surfaces were acquired for the training data set. Given the relatively small size of the image dataset, aggressive data augmentation techniques were introduced during the training and evaluation process to ensure robust model generalisation ability. The results obtained demonstrate the significant impact of data augmentation on model performance, highlighting its importance in training and evaluating deep learning models with limited data. This research also emphasises the need for innovative data pre-processing strategies in an efficient and robust machine learning model delivery to the industrial environment.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.