Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Motor imagery (MI) decoding is the core of an intelligent rehabilitation system in brain computer interface, and it has a potential advantage by using source signals, which have higher spatial resolution and the same time resolution compared to scalp electroencephalography (EEG). However, how to delve and utilize the personalized frequency characteristic of dipoles for improving decoding performance has not been paid sufficient attention. In this paper, a novel dipole feature imaging (DFI) and a hybrid convolutional neural network (HCNN) with an embedded squeeze-and-excitation block (SEB), denoted as DFI-HCNN, are proposed for decoding MI tasks. EEG source imaging technique is used for brain source estimation, and each sub-band spectrum powers of all dipoles are calculated through frequency analysis and band division. Then, the 3D space information of dipoles is retrieved, and by using azimuthal equidistant projection algorithm it is transformed to a 2D plane, which is combined with nearest neighbor interpolation to generate multi sub-band dipole feature images. Furthermore, a HCNN is designed and applied to the ensemble of sub-band dipole feature images, from which the importance of sub-bands is acquired to adjust the corresponding attentions adaptively by SEB. Ten-fold cross-validation experiments on two public datasets achieve the comparatively higher decoding accuracies of 84.23% and 92.62%, respectively. The experiment results show that DFI is an effective feature representation, and HCNN with an embedded SEB can enhance the useful frequency information of dipoles for improving MI decoding.
2
Content available remote The quantitative application of channel importance in movement intention decoding
EN
The complex brain network consists of multiple collaborative regions, which can be activated to varying degrees by motor imagery (MI) and the induced electroencephalogram (EEG) recorded by an array of scalp electrodes is usually decoded for driving rehabilitation system. Either all channels or partially selected channels are equally applied to recognize movement intention, which may be incompatible with the individual differences of channels from different locations. In this paper, a channel importance based imaging method is proposed, denoted as CIBI. For each electrode of MI-EEG, the power over 8–30 Hz band is calculated from discrete Fourier spectrum and input to random forest algorithm (RF) to quantify its contribution, namely channel importance (CI); Then, CI is used for weighting the powers of α and β rhythms, which are interpolated to a 32 x 32 grid by using Clough-Tocher method respectively, generating two main band images with time-frequency-space information. In addition, a dual branch fusion convolutional neural network (DBFCNN) is developed to match with the characteristic of two MI images, realizing the extraction, fusion and classification of comprehensive features. Extensive experiments are conducted based on two public datasets with four classes of MI-EEG, the relatively higher average accuracies are obtained, and the improvements achieve 23:95% and 25:14% respectively when using channel importance, their statistical analysis are also performed by Kappa value, confusion matrix and receiver operating characteristic. Experiment results show that the personalized channel importance is helpful to enhance inter-class separability as well as the proposed method has the outstanding decoding ability for multiple MI tasks.
3
Content available remote An improved MAMA-EMD for the automatic removal of EOG artifacts
EN
The separation of electrooculogram (EOG) and electroencephalogram (EEG) is a potential problem in brain-computer interface (BCI). Especially, it is necessary to accurately remove EOG, as a disturbance, from the measured EEG in brain disease diagnosis, EEG-based rehabilitation systems, etc. Due to the interaction between the eye and periocular musculature, a multipoint spike is often produced in EEG for each ocular activity. Masking-aided minimum arclength empirical mode decomposition (MAMA-EMD) was developed to robustly decompose time series with impulse-like noise. However, the decomposition performance of MAMA-EMD was limited in the case of one impulse with multiple contiguous spike points. In this paper, MAMA-EMD was improved (called IMAMA-EMD) by supplementing the minimum arclength criterion, and it was combined with kernel independent component analysis (KICA), yielding an automatic EOG artifact removal method, denoted as KIIMME. The multi-channel contaminated EEG signals were separated into several independent components (ICs) by KICA. Then, IMAMA-EMD was applied to the EOG-related ICs decomposition to generate a set of inherent mode functions (IMFs), the low frequency ones, which have higher correlation with EOG components, were removed, and the others were employed to construct ‘clean’ EEG. The proposed KIIMME was evaluated and compared with other methods on semisimulated and real EEG data. Experimental results demonstrated that IMAMA-EMD effectively eliminated the influence of multipoint spike on sifting process, and KIIMME improved the removal accuracy of EOG artifacts from EEG while retaining more useful neural data. This improvement is of great significance to research on brain science as well as BCI.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.