Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  zintegrowana elektrownia
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
System analysis – in spite of the fact that the notion “system” goes back to Aristotle’s times – was developed only in the second half of the 20th century. System approach bases on Aristotle’s statement that “the whole is more than the sum of its parts”. This means that a power plant is not only a set of the boiler, the turbine, the condenser and the pump but also their mutual interconnections. Large energy systems are characterized by a hierarchical structure. The domestic energy system, the supersystem in this hierarchy, is divided into subsystems, viz. fuel systems (e.g. the gas-energy system), electro-energy system and thermal- energy systems. On the lower level of the hierarchy there are industrial energy systems, energy systems of complex buildings, as well as modern integrated power or CHP plants. The latter ones are the subject matter of the investigations dealt with in this paper. A characteristic feature of such systems is the inseparable inclusion of the consumers of fuels and energy within the structure of these systems. In the system investigations presented in this paper first of all the input-output analysis was applied. A general notation of the mathematical model of energy management has been presented, later on applied to analyze industrial energy systems (on the example of ironworks), the energy system of complex buildings and integrated oxy-fuel combustion power plant. The application of the model of the energy management of ironworks has been provided in order to investigate the energy rationalization (replacement of the traditional water cooling of the furnace by evaporative cooling) which influences the entire energy management of ironworks. In the case of the mathematical model of energy systems of complex buildings its application in the assessment of cumulative energy consumption has been shown. When the system approach is applied for the purpose of investigating an integrated oxy-fuel combustion power plant, the results of the influence of the purity of oxygen on the direct and cumulative energy efficiency of an integrated power station has been analyzed. The paper includes also an algorithm and example of system approach to the preliminary design of energy systems. The structural analysis concerning the input-output analysis was presented in order to transform it to a matrix with diagonally-arranged blocks containing the least number of non-zero elements below the main diagonal. Lagrange’s multipliers method of decomposition of the global optimization task has been applied. It has been proved that the matrix method of calculating the unit costs of energy carriers is a coordinating procedure in the applied Lagrange method. The example concerns an industrial-urban complex.
PL
Analiza systemowa, mimo że podejście systemowe jest znane od czasów Arystotelesa, rozwinęła się dopiero w drugie połowie ubiegłego wieku. Podejście systemowe wywodzi się od stwierdzenia Arystotelesa “całość to więcej niż suma jej części”. To oznacza, że elektrownia to nie tylko urządzenia takie jak kocioł, turbogenerator, skraplacz i pompa ale także wzajemne powiązania między tymi elementami. Duże systemy energetyczne charakteryzują się strukturą hierarchiczną. Krajowy system energetyczny, nadrzędny w tej hierarchii, jest podzielony na podsystemy, a mianowicie podsystemy paliwowe (np. gazo-energetyczny), podsystem elektro-energetyczny, podsystem cieplno-energetyczny. Na niższym poziomie hierarchii znajdują się przemysłowe systemy energetyczne, systemy energetyczne kompleksów budowlanych, jak również zintegrowane elektrownie i elektrociepłownie. Te obiekty są przedmiotem dalszych rozważań. Charakterystyczną cechą dużych systemów energetycznych jest włączenie odbiorców nośników energii do struktury tych systemów. W badaniach systemowych prezentowanych w artykule została zastosowana metoda “input-output analysis”. Zaprezentowano modele matematyczne i przykładowe zastosowania w przypadku gospodarki energetycznej zakładów przemysłowych (na przykładzie huty żelaza), kompleksu budowlanego (na przykładzie biurowca) i zintegrowanej elektrowni bazującej na spalaniu tlenowym. W przypadku gospodarki energetycznej huty żelaza zaprezentowano przykład oceny systemowej efektów racjonalizacji energetycznej (zastosowanie chłodzenia wyparkowego w piecu hutniczym). Przedstawiono analizę skumulowanego zużycia energii wykorzystując model systemowy gospodarki energetycznej kompleksu budowlanego. Model matematyczny zintegrowanej elektrowni ze spalaniem tlenowym wykorzystano do analizy wpływu czystości tlenu na bezpośrednią i skumulowaną sprawność elektrowni. Praca zawiera także algorytm i przykład podejścia systemowego w projekcie wstępnym systemu energetycznego. Przedstawiono wyniki analizy strukturalnej macierzy powiązań międzygałęziowych mającej na celu minimalizację powiązań o charakterze sprzężeń zwrotnych. Dla rozwiązania globalnego zadania optymalizacyjnego zastosowano algorytm dekompozycji według metody nieoznaczonych czynników Lagrange’a. Procedurą koordynacyjną w zastosowanym algorytmie dekompozycji jest metoda macierzowa obliczania kosztów jednostkowych nośników energii. Zaprezentowany przykład dotyczy gospodarki energetycznej huty żelaza powiązanej z miejskim systemem ciepłowniczym.
EN
In order to analyze the cumulative exergy consumption of an integrated oxy-fuel combustion power plant the method of balance equations was applied based on the principle that the cumulative exergy consumption charging the products of this process equals the sum of cumulative exergy consumption charging the substrates. The set of balance equations of the cumulative exergy consumption bases on the ‘input-output method’ of the direct energy consumption. In the structure of the balance we distinguished main products (e.g. electricity), by-products (e.g. nitrogen) and external supplies (fuels). In the balance model of cumulative exergy consumption it has been assumed that the cumulative exergy consumption charging the supplies from outside is a quantity known a priori resulting from the analysis of cumulative exergy consumption concerning the economy of the whole country. The byproducts are charged by the cumulative exergy consumption resulting from the principle of a replaced process. The cumulative exergy consumption of the main products is the final quantity.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.