Ograniczanie wyników
Czasopisma help
Autorzy help
Lata help
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 99

Liczba wyników na stronie
first rewind previous Strona / 5 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  zinc oxide
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 5 next fast forward last
EN
Nano-ZnO/transition metal composites (NZTC) were prepared via sol-gel method where transition metal (Cu2+, Ag+, Co2+ and Ni2+) and ZnSO4 were used as the substrate. NZTC was characterized using scanning electronic microscope (SEM), ultraviolet-visible spectrophotometer (UV), fluorescence spectrophotometer (XRF), infrared spectrometer (IR), and so on. The photocatalytic degradation behaviors of nano-ZnO and NZTC for formaldehyde in gas and solution were investigated. The results indicated that nano-ZnO and NZTC could achieve the degradation of formaldehyde by photocatalytic process, and the degradation rates were up to 43.75% and 67.2% in gas and solution, respectively, thus thereby leading to good application prospects in the degradation of organic compounds.
EN
High operating temperatures, particularly under conditions of high solar irradiation have adverse effects on the performance of the photovoltaic (PV) panels. The efficiency of electricity generation decreases with an increase in operating temperature, and therefore, minimizing the operating temperature is essential. Thus, efficient cooling systems are of significant importance, particularly in areas with scorching heat during the day. Hybrid nanoparticles have been identified as one of the most effective methods in utilizing the concept of PV cooling because of their special characteristics that can help improve the efficiency of solar panels in the long run. These nanoparticles offer the best heat dissipation and convective heat transfer alongside better light trapping and stability and are relatively cheaper to produce, thus playing a central role in enhancing the cooling effectiveness in photovoltaic systems. In our view, depending on these combined forces, hybrid nanoparticles can enhance the general effectiveness, dependability, and efficacy of solar panels as a high-potential instrument for solar power extraction. This study sought to determine the most effective ZnO and Al₂O₃ Nanofluids concentrations in improving the performance of PV modules. Five PV modules were placed side by side. One of them was a reference sample; the other four were coated on the backside with a range of hybrid nanofluid concentrations. K-type thermocouples were used to monitor the hourly backside thermal profile of each module to ensure thermal integrity. Moreover, a data logger monitored the current and the voltage of each PV during the experiment. In general, the coated modules had significantly better results compared to the control. The best improvement in the generated output power was obtained when 0. 4% Al₂O₃ and 0.2% ZnO reached 28.4% and increased efficiency to 29.6%.
EN
In this study, physical and functional properties of the cement composites containing ZnO, ZnO/lignin and lignin admixtures were investigated using Response Surface Methodology (RSM). The I-optimal design based on RSM was used to assess the influence of ZnO-based doping agent, of either commercial or synthetic origin, on cement composite production in the function of average compressive strength and cost. Polynomial mathematical models were developed by RSM confronting results from the experimental design. The accuracy and precision of the utilized models established by I-optimal design were tested using Analysis of Variance (ANOVA). The first stage of formulation optimization revealed that the use of commercially available ZnO-based admixture no. 4 (ZnO-SA, supplied by Sigma Aldrich) allowed to achieve the desired results, passing all the requirements, i.e., the best microbial purity combined with reasonable cost, followed by satisfactory physical properties. In the second stage of formulation optimization, the influence of implementing the hybrid materials, i.e., ZnO-SA mixed in different proportions with lignin was evaluated. RSM revealed that doping admixture no. 3, i.e., ZnO-SA/lignin (5:1), is the best candidate, which comprised augmented functional and physical properties of the fabricated cement composite. This component exhibited the best microbial purity as well as the lowest total pore volume, followed by satisfactory physical properties. Verification of the model findings indicated considerable agreement between the predicted and experimental values. From the findings, it was confirmed that a reasonable cost-performance balance for cement composites can be achieved using ZnO-SA and ZnO-SA/lignin (5:1).
EN
This study aimed to produce gellan gum-based hydrogels with the addition of zinc oxide as a potential dressing material. Hydrogels with ZnO concentrations of 0.01%, 0.02% and 0.04% were prepared, micrometric and nanometric ZnO particles were used, and a CaCl2 crosslinker was added to one part of the samples. All samples (14 types) produced by the freeze drying method were characterized with high swelling properties (>2000%), what is important to ensure the absorption of exudates from wounds. Samples with ZnO particles cross-linked with CaCl2 lost less mass after incubation in aqueous media and were characterized by better dimensional stability than those without crosslinking. The pH of the extracts of the samples containing ZnO particles was more neutral (pH 7.0-7.6) than that of the control gellan gum samples (pH of 5.5-6.1). The zinc release from cross-linked samples was twice as high for those containing nanometric particles than for micrometric particles (1.94 ± 0.04 mg/l and 0.93 ± 0.02, respectively). Relatively large amounts of released zinc species in the case of samples containing ZnO nanoparticles are promising in the context of the antibacterial properties and treatment of infected wounds. A lower amount of zinc released from samples with ZnO microparticles could be sufficient to prevent the development of the infection. Furthermore, both materials show satisfactory cytocompatibility with L929 fibroblasts, as shown by Alamar blue and live/dead viability tests, making them prospective candidates for wound healing
EN
There is an increasing trend in the modern construction industry to use nanomaterials, which allow to improve the performance of construction materials on the one hand, and to shape new properties on the other. This study presents the results of physicomechanical and antibacterial tests for cement composites modified with zinc nanooxide. The main aim of this study was to compare the structural and morphological properties of three selected commercial zinc nanooxides and to determine the influence of the above mentioned nanooxides on the physicomechanical properties of cement composites and the ability to inhibit the activity of gram-positive and gram-negative bacteria as well as fungi. It was shown that commercial nanooxides can significantly differ in terms of physicochemical properties, which depend on their production method. Two of them were characterized by high specific surface areas, which in turn translated into rheological properties of cement mortars. Nanooxides with higher specific surface areas tend to reduce the plasticity of the mortars. According to the literature data, all nanooxides caused a delay in cement binder setting by more than 100%. This resulted in a reduction of the early one-day flexural and compressive strength of the composite. In the later curing period, especially after 7 days of hardening, a significant acceleration of the hydration process was observed in composites with the addition of all nanooxides, which was confirmed by significant increases in mechanical parameters. Nevertheless, the tested nanooxides showed different sensitivity towards microorganisms, which was influenced by both the type of nanooxide and bacteria.
EN
In this study, the influence of polysorbate 80 on zinc oxide flotation was investigated with an amine collector. The results indicated that the pretreatment of amines with polysorbate 80 enhanced the Zn grade and recovery obtained using zinc oxide flotation. Desliming prior to flotation is not suggested based on the results of this study. The appropriate temperature for flotation was as low as 8 °C, and this flotation method also could be applied to different types of zinc oxide ores. Under optimum flotation conditions, a concentrate with a Zn grade of 48.34% and a Zn recovery of 95.97% was obtained.
EN
Heavy metal is a type of metal that has a high density and high toxicity when consumed by living things, especially humans. To prevent the impact of environmental pollution, optimal handling of wastewater containing heavy metals is required, including the wastewater from laboratories. This research aimed to study the effect of pH, catalyst dose, and irradiation time on the reduction of Copper (Cu), Iron (Fe), and Lead (Pb) heavy metals and their application to laboratory wastewater treatment. Among the Advanced Oxidation Processes (AOPs) methods, photocatalysis was chosen to reduce the level of Cu, Fe, and Pb heavy metals where zinc oxide (ZnO) is used as a photocatalyst and the sunlight as a light source. To determine the effect of pH, catalyst dose, and time on the reduction of heavy metal levels, firstly, this research used the synthetic wastewater containing Cu, Fe, or Pb heavy metals. On the basis of the experimental results, it is concluded that the pH value, catalyst dose, and time affect the photocatalytic process, decreasing the levels of Cu, Fe, and Pb metals. The optimum pH value obtained for Cu was at pH 7–8, for Fe it was at pH 6, and for Pb it was at pH 8; in turn, the metal removal percentages were 99.46, 99.91, and 99.70%, respectively. In the photocatalysis of synthetic wastewater, high removal percentage of more than 99% was achieved by using 0.1 g/L catalyst. The optimum decrease of metals occurred in the first 15 minutes of solar irradiation where the removal percentage was close to 100%. In this study, the application of ZnO photocatalyst under solar irradiation can reduce the heavy metals content in the laboratory wastewater by almost 100%, which meets the environmental quality standard for Cu, Fe, and Pb.
EN
In this work, zinc oxide (ZnO) thin films are deposited on glass substrate using the sol-gel spin coating technique. The effect of annealing temperature on structural properties was investigated. The ZnO sol-gel was produced from zinc acetate dehydrate as the starting material with iso-propanol alcohol as the stabilizer. The ratio was controlled, distilled water and diethanolamine as the solvent mixing on a magnetic stirrer for an hour under constant heat of 60°C. The ZnO thin film was deposited using the spin coating technique with the speed of 3000 rpm for 30 minutes before the sample undergoes pre-heat in the oven at the temperature of 100°C for 10 minutes. The sample was annealing in the furnace for an hour at 200°C, 350°C, and 500°C. The X-ray diffraction (XRD) analysis confirms that hexagonal wurtzite structure with zincite and zinc acetate hydroxide hydrate composition. The thin films surface roughness was analyzed using an atomic force microscope (AFM) and scanning electron microscope (SEM) for surface morphology observation.
EN
Zinc oxide (ZnO) is a prominent n-type semiconductor material used in optoelectronic devices owing to the wide bandgap and transparency. The low-temperature growth of ZnO thin films expands diverse applications, such as growth on glass and organic materials, and it is also cost effective. However, the optical and electrical properties of ZnO films grown at low temperatures may be inferior owing to their low crystallinity and impurities. In this study, ZnO thin films were prepared by atomic layer deposition on SiO2 and glass substrates in the temperature range of 46-141℃. All films had a hexagonal würtzite structure. The carrier concentration and electrical conductivity were also investigated. The low-temperature grown films showed similar carrier concentration (a few 1019 cm-3 at 141°C), but possessed lower electrical conductivity compared to high-temperature (>200°C) grown films. The optical transmittance of 20 nm thin ZnO film reached approximately 90% under visible light irradiation. Additionally, bandgap energies in the range of 3.23-3.28 eV were determined from the Tauc plot. Overall, the optical properties were comparable to those of ZnO films grown at high temperature.
EN
Rare earth (RE) elements are important for the optical tuning of wide bandgap oxides (WBO) such as β-Ga2O3 or ZnO, because β-Ga2O3:RE or ZnO:RE show narrow emission lines in the visible, ultra-violet and infra-red region. Ion implantation is an attractive method to introduce dopant into the crystal lattice with an extraordinary control of the dopant ion composition and location, but it creates the lattice damage, which may render the dopant optically inactive. In this research work, we investigate the post-implantation crystal lattice damage of two matrices of wide-bandgap oxides, β-Ga2O3 and ZnO, implanted with rare-earth (RE) to a fluence of 5 x 10^14, 1 x 10^15 and 3 x 10^15 atoms/cm^2, and post-growth annealed in Ar and O2 atmosphere, respectively. The effect of implantation and annealing on both crystal lattices was investigated by channeling Rutherford backscattering spectrometry (RBS/C) technique. The level of crystal lattice damage caused by implantation with the same RE fluences in the case of β-Ga2O3 seems to be higher than in the case of ZnO. Low temperature photoluminescence was used to investigate the optical activation of RE in both matrices after performed annealing.
EN
In this study, firstly, the effects of ammonia concentration, leaching time and solid/liquid ratio on the leaching behaviour of zinc from a smithsonite (ZnCO3) ore sample in aqueous ammonia solutions were investigated at room temperature by chemical, X-ray diffraction (XRD) and Fourier-transform infrared (FT-IR) spectroscopy analyses. It was found that leaching ratio of zinc steeply increased from 30.1 to 76.2% with increasing ammonia concentration from 1.0 to 4.0 M and maximum zinc leaching ratio of 79.7% was reached after leaching in 13.3 M NH3 solution. The XRD pattern of the residue obtained after leaching in 4.0 M NH3 solution for 90 min at solid/liquid ratio of 0.15 g/mL, the optimum condition, showed that smithsonite phase in the ore sample almost completely dissolved whereas the gangue minerals goethite and calcite remained unaffected, confirming the selectivity of ammonia solution for zinc dissolution. Together with zinc, leaching ratios of cadmium were also determined. In second part of the study, precipitation tests (by complete drying at different temperatures) were conducted on dissolved zinc, carbonate and ammonia containing pregnant solutions obtained after selected leaching experiments. By complete drying of the pregnant solutions at low temperatures, i.e. 50°C, relatively pure solid zinc ammine carbonate (Zn(NH3)CO3) precipitates and at higher temperatures, i.e. 150°C, quite pure solid zinc carbonate hydroxide (Zn5(CO3)2(OH)6) precipitates could be prepared. High-temperature heating of Zn(NH3)CO3 and Zn5(CO3)2(OH)6 precipitates at 450°C yielded single-phase zinc oxide (ZnO). The chemical compositions, FT-IR spectra and scanning electron microscope (SEM) photographs of some of the precipitates were also presented.
EN
In this work, the structural changes occurred in a zinc carbonate (smithsonite) ore sample following heating at temperatures between 523 K and 1173 K were investigated in detail using X-ray diffraction (XRD), thermal (TG/DTA) and Fourier-transform infrared (FT-IR) spectroscopy analyses. Afterwards, the leaching characteristics of zinc from the ore sample and the heated ore samples in sodium hydroxide solutions were determined. While heating at 523 K did not cause any structural change in the ore sample, heating at 723 K completely converted smithsonite (ZnCO3) in the ore sample to zinc oxide (ZnO), which resulted lower zinc leaching efficiencies of 40.6% and 62.0% for 3 and 4 mol/dm3 NaOH concentrations, respectively, in comparison to zinc leaching efficiencies (67.2% and 70.7%) obtained for the unheated ore sample. On the other hand, due to neoformation of dissolution resistant ZnFe2O4, Ca2ZnSi2O7 and Zn2SiO4 phases during heating and formation of CaZn2(OH)6∙2H2O phase during leaching, the leaching efficiency of zinc further decreased to 22.2% and 31.3%, respectively, in 3 and 4 mol/dm3 NaOH solutions for the ore sample heated at 1173 K. The formation of zinc-containing dissolution resistant phases by high-temperature heating was observed to be the only reason for the reduction in the zinc leaching efficiency (49.4% at 1173 K) at the highest NaOH concentration (8 mol/dm3) studied. In this work, the comparative precipitation studies were also conducted and crystalline zinc oxides with different morphologies could be precipitated at considerably high efficiencies from the selected pregnant solutions obtained following leaching.
EN
Suitable conditions for the preparation of nano- and microstructured materials from cellulose acetate and cellulose acetate/ZnO from solutions/suspensions in aceton/water by electrospinning/electrospraying were found. The materials obtained were characterised by scanning electron microscopy (SEM), X-ray diffraction analysis (XRD) and contact angle measurements. The antifungal activity of the materials obtained against Phaeomoniella chlamydospora, which is one of the main species causing diseases in grapevines, was studied as well. It was found that electrospinning of CA solutions with a concentration of 10 wt% reproducibly resulted in the preparation of defect-free fibres with a mean fibre diameter of ~780 nm. The incorporation of ZnO nanoparticles resulted in the fabrication of hybrid materials with superhydrophobic properties (contact angle 152°). The materials decorated with ZnO possessed antifungal activity against P. chlamydospora. Thus, the fibrous materials of cellulose acetate decorated with ZnO particles obtained can be suitable candidates to find potential application in agriculture for plant protection.
PL
W pracy wskazano odpowiednie warunki do otrzymywania materiałów nano- i mikrostrukturalnych z octanu celulozy i octanu celulozy/ZnO z roztworów/zawiesin w acetonie/wodzie metodą elektroprzędzenia/elektrorozpylania. Uzyskane materiały scharakteryzowano za pomocą skaningowej mikroskopii elektronowej (SEM), dokonano analizy dyfrakcji rentgenowskiej (XRD) oraz pomiarów kąta zwilżania. Zbadano również działanie przeciwgrzybiczne uzyskanych materiałów przeciwko Phaeomoniella chlamydospora, który jest jednym z głównych gatunków wywołujących choroby winorośli. Stwierdzono, że podczas elektroprzędzenia z roztworów CA o stężeniu 10% wag. w sposób powtarzalny otrzymywano włókna wolne od defektów o średniej średnicy ~ 780 nm. Wprowadzenie nanocząstek ZnO zaowocowało wytworzeniem materiałów hybrydowych o właściwościach superhydrofobowych (kąt zwilżania 152°). Materiały z dodatkiem ZnO wykazywały działanie przeciwgrzybiczne przeciwko P. chlamydospora. Stwierdzono, że otrzymane materiały mogą być stosowane w rolnictwie do ochrony roślin.
EN
The present study investigates the influence of pigmental impurities on glass fibre-reinforced polypropylene using model compounds to simulate the behaviour of recyclate-based compositions. Most industrial-quality (containing recyclate) PP compounds are black coloured (using carbon black pigment), with an almost unavoidable presence of inorganic white pigment (e.g. titanium dioxide) impurities. There are widespread beliefs in the compounding industry that such impurities have a detrimental effect on the mechanical properties of glass fibre-reinforced compounds, but up to now no systematic study of this problem from the industrial point of view has been reported. For this purpose, a range of compounds was prepared on a twin- screw compounding line and the properties were evaluated, with special focus on the mechanical properties. The results confirmed the strong influence of some white pigments, particularly titanium dioxide, and rejected the thesis of the detrimental action of carbon black.
15
Content available remote Fabrication of Multifunctional Nano Gelatin/Zinc Oxide Composite Fibers
EN
According to health studies, reinforcing gelatin is necessary in order to obtain the multifunctional material. In this study, nano zinc oxide (ZnO; at concentrations of 0.5%, 1% and 1.5%) was doped with gelatin and the solution was electrospun under specific conditions to obtain multifunctional gelatin/ZnO nanofibers. The morphology of the nanofibers was studied by field emission scanning electron microscope (FESEM), and energy-dispersive X-ray spectrometry (EDX) analysis indicated the presence of nano Zn on the surface of gelatin fibers. On the contrary, elemental mapping analysis proved the distribution of nano material along the nano gelatin fibers. The results show that the produced nano gelatin/ZnO composite increases the ultraviolet (UV) blocking of fabric significantly. It is also observed that electrospun gelatin/ZnO nanofibers have excellent bactericidal property against both Bacillus cereus (Gram-positive) and Escherichia coli (Gram-negative) bacteria.
EN
A n-type semiconductor ZnO has high transmittance features, excellent chemical stability and electrical properties. It is also commonly used in a range of fields, such as gas sensors, photocatalysts, optoelectronics, and solar photocell. Magnesium-doped zinc oxide (Mg-ZnO) nano powders were effectively produced using a basic chemical precipitation process at 45°C. Calcined Mg-ZnO nano powders have been characterized by FTIR, XrD, SEM-EDX and Pl studies. XRD measurements from Mg-ZnO revealed development of a crystalline structure with an average particle size of 85 nm and SEM analysis confirmed the spherical morphology. Electrochemical property of produced Mg-ZnO nanoparticles was analyzed and the specific capacitance value of 729 F g-1 at 0.5 A g-1 current density was recorded and retained a specific capacitance ~100 percent at 2 A g-1 current density.
EN
ZnO, ZnO/Alginate coatings were obtained on the pre-anodized Ti6Al4V substrates by the thermal substrate deposition method (TSD). In the frame of this work, the TSD method was at first applied for obtaining ZnO coating from aqueous alginate-containing and alginate-free solutions on a metal surface. XRD, SEM analyses show that the biopolymer has a significant influence on the formation of the coating, their morphology, texture, structure of ZnO nanoparticles. The average rate of ZnO deposition from alginate containing solution is 30 μm/min, while from alginate-free solutions – 6 μm/min. In the presence of alginate, spherical particles with flower-shaped inclusions are formed, while from the polymer-free solution, single crystals in the form of tetrahedral were obtained. Zone of inhibition test against Gram-positive S. aureus ATCC 25923 and Gram-negative E. coli ATCC 25922 proves the antibacterial activity of the ZnO/Alg coatings.
18
EN
Cross-link method has been used to load nano CeO2, ZnO, and TiO2 on the surface of cotton fabric. Three types of nanocomposite fabrics are prepared (cotton/CeO2, cotton/CeO2/ZnO, and cotton/CeO2/TiO2) and their properties were investigated. Field emission scanning electron microscopic (FESEM) images of the samples showed good distribution of nanomaterial, and energy dispersive X-ray spectroscopy (EDX) and X-ray fluorescence (XRF) samples proved the usage of amount of nanomaterials. On the other hand, elemental mapping was used to study the distribution of each nanomaterial separately. Antibacterial property of the samples showed excellent results against both Gram-negative and Gram-positive bacteria. Also ultraviolet (UV)-blocking of treated samples showed that all samples have very low transmission when exposed to UV irradiation.
PL
W ramach projektu "Opracowanie energooszczędnej technologii wytwarzania kwalifikowanej bieli cynkowej z cynku pierwotnego, wtórnego i odpadów cynkowych" współfinansowanego ze środków Narodowego Centrum Badań i Rozwoju w ramach programu GEKON II - GENERATOR KONCEPCJI EKOLOGICZNYCH na podstawie opracowanych wytycznych: zaprojektowano, zbudowano i uruchomiono w Oddziale Huty Oława w Będzinie modelowe stanowisko badawcze przeznaczone do wytwarzania bieli cynkowej w ilości 6 Mg/dobę. Przeprowadzone na modelowym stanowisku badawczym próby wytwarzania bieli cynkowej potwierdziły osiągnięcie założonych parametrów tj.: oszczędność energii i gazu, ograniczenie powstałych w obrębie instalacji odpadów cynkonośnych. Poziom konsumpcji energii dla modelowego stanowiska badawczego w Będzinie jest ponad dwukrotnie niższy niż dla pieca jednoretortowego PC1 pracującego w Oławie. Parametr ten wskazuje na nowoczesność technologii zastosowanej na modelowym stanowisku badawczym oraz mniejsze oddziaływanie na środowisko.
EN
The "Development of the energy efficient technology for the production of the eligible zinc white from primary and secondary zinc and zinc waste" project was co-financed by the National Centre for Research and Development under the GEKON II - Generator of Ecological Concepts program. Based on the guidelines developed within the project, the model testing installation to produce 6Mg of zinc white per day was designed, constructed and launched in Smelter’s Oława department in Będzin. The tests of zinc white production performed on the model installation confirmed that the design parameters were achieved, i.e. energy and gas saving as well as the reduction of the amount of zinc-bearing waste within the installation. The energy consumption for the model testing installation in Będzin is over two times lower than for the single-retort PC1 furnace operating in Oława. This parameters indicates the novelty of the technology used for the testing installation as well as lower environmental impact.
EN
The pyrometallurgical process of production of zinc and lead realized in The Zinc Smelting Plant "Miasteczko Śląskie" S.A. poses a potential threat to the natural environment. Technologies applied in the process produce toxic pollutants, among which one of the most important is dust which contains Pb, Zn, Cd, As, Sb, Tl, etc. The detailed determination of chemical and mineral compositions of the dust allows to understand its behaviour in the environment and observe migration pathways. The paper presents results of investigations of the migration possibility to the soil and water environment of trace elements cadmium and antimony present in one of the main phases, zinc oxide, emitted with dusts from various operations of pyrometallurgical extraction of Zn and Pb at the Miasteczko Slaskie Zinc Smelting Plant, Poland. The quantity of elements was estimated on the basis of: (i) dust fall, (ii) zinc oxide content in dust, (iii) element content in zinc oxide, and (iv) mobility of zinc oxide under the hypergenic conditions of the soil and water environment of the Smelting Plant area. Among the elements considered, cadmium and antimony emitted with zinc oxide contained in dusts from the Sintering Machine will pose a potential hazard for the soil and water environment of the Miasteczko Slaskie Zinc Smelting Plant area.
PL
Proces pirometalurgicznego otrzymywania cynku i ołowiu metodą Imperial Smelting Process (ISP) stwarza potencjalne zagrożenie dla środowiska naturalnego. Proces technologiczny ISP jest źródłem toksycznych zanieczyszczeń, spośród których jednymi z najważniejszych są pyły zawierające w swym składzie między innymi takie pierwiastki jak Pb, Zn, Cd, As, Sb, Tl. Dokładne poznanie składu chemicznego i mineralnego zanieczyszczeń pyłowych pozwala na określenie ich zachowania się w środowisku, prześledzienie drogi migracji. W pracy przedstawiono wyniki badań możliwości migracji do środowiska gruntowo-wodnego pierwiastków śladowych występujących w jednej z głównych faz – siarczku cynku – emitowanej z pyłami pochodzącymi z różnych odcinków technologicznych pyrometalurgicznego otrzymywania Zn i Pb w Hucie Cynku Miasteczko Śląskie S.A., Polska. Ilość pierwiastków została oszacowana na podstawie: (i) opadu pyłu, (ii) udziału siarczku cynku w pyle, (iii) zawartości pierwiastka w siarczku cynku oraz (iii) mobilności siarczku cynku w warunkach hipergenicznych środowiska gruntowo-wodnego rejonu huty. Potencjalne zagrożenie dla środowiska gruntowo-wodnego rejonu Huty Cynku „Miasteczko Śląskie” S.A., spośród rozpatrywanych pierwiastków, będą stanowić kadm oraz antymon emitowane wraz z siarczkiem cynku zawartym w pyłach Maszyny Spiekalniczej
first rewind previous Strona / 5 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.