Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  zielone kompozyty
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Purpose: In this study, an environmentally friendly metal matrix was prepared, and the influence of eggshell powder and CaCO3 particles on the tensile strength and hardness of recycled aluminium were assessed. Design/methodology/approach: A matrix made of recycled aluminium was employed. Calcium carbonate and eggshells served as the study's reinforcing materials. Separately, weight percentages of 2, 4, and 8% of eggshell and calcium carbonate were used. The samples were made by sand-casting. Findings: The results showed that both eggshell and calcium carbonate positively affect the hardness, yield, and ultimate tensile strength of recycled aluminium. The hardness values were improved as the percentage of the eggshell increased. The maximum hardness was achieved at 2% calcium carbonate. Similarly, the highest improvement of yield strength was for 2% CaCO3 addition, while the highest tensile strength was obtained at 8% eggshell addition. Research limitations/implications: To get better results, it would be desirable to use finer eggshells than those utilized in this study. Practical implications: Composites made with an aluminium matrix exhibit exceptional mechanical and physical characteristics. The most challenging obstacle to overcome is the cost of metal matrix composites. Eggshells are a by-product that could be employed as a lightweight, affordable form of reinforcement. One way to get rid of this by-product, improve composite characteristics, and lower the cost of aluminium composite is to use eggshells. Originality/value: A comparative investigation was carried out to determine the effects of adding agricultural by-product eggshell, and commercial CaCO3 reinforcement material on the characteristics of recycled aluminium matrix integrated 425 µm sized eggshell and CaCO3 separately as a reinforcement material to create a metal matrix that is beneficial to the environment.
EN
The influence of basalt fabric on the tensile mechanical properties and the impact resistance of green epoxy resin was investigated. Composites with parallel arrangement of insert yarns had better properties than in the case of their perpendicular arrangement. The properties were also influenced by the number of layers of the fabric. The tensile strength and impact resistance of the composites were better than the commercially available side mirror covers due to the superior properties of the basalt fiber.
PL
Zbadano wpływ tkaniny bazaltowej na właściwości mechaniczne przy rozciąganiu i odporność na uderzenie „zielonej” żywicy epoksydowej. Kompozyty o równoległym ułożeniu przędzy charakteryzowały się lepszymi właściwościami niż te o prostopadłym ułożeniu. Na właściwości miała również wpływ liczba warstw tkaniny. Wytrzymałość na rozciąganie i odporność na uderzenie kompozytów były lepsze niż dostępnych na rynku osłon lusterek bocznych ze względu na dobre właściwości włókna bazaltowego.
3
EN
Natural fibres are used to develop green composites due to their environmentally friendly nature, ease of availability, low cost, higher strength, as well as good thermal, acoustic, and insulating properties. In this study, jute fibre (JF) and sisal fibre (SF) were considered as reinforcement and a biodegradable polymer, namely polylactic acid (PLA), was selected to fabricate the composites by the injection moulding process. The fibres were chemically treated with sodium hydroxide (NaOH) at a concentration of 2% to improve the characteristics of the fibre. The effect of the injection moulding parameters like injection pressure (bars), injection speed (mm/s), and melting temperature (°C) on the tensile and flexural properties of the sisal fibre/polylactic acid (SF/PLA) and jute fibre/polylactic acid (JF/PLA) composites were investigated. Taguchi’s L9 orthogonal array was chosen for the design of experiments, and analysis of variance (ANOVA) was performed to find the significance and contribution of the selected parameters. The optimum levels from the main plots of both the tensile and flexural strength of the JF/PLA composite were found to be the injection pressure of 90 bars, injection speed of 60 mm/s, and injection temperature of 165°C. Meanwhile, the optimum level of tensile strength for SF/PLA-based composite was recorded as the injection pressure of 70 bars, injection speed of 40 mm/s, and temperature of 165°C. For the flexural strength, the optimum level was determined as the injection pressure of 90 bars, injection speed of 60 mm/s, and temperature of 165°C.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.