Purpose: This contribution provides an overview on properties and origin of nanodiamonds in primitive meteorites. Nanodiamond are a type of stardust, i.e. “pre-solar” grains that formed in the outflows or ejecta of stars. Design/methodology/approach: We summarize previously obtained results and include our results dealing with recoil loss from nanoparticles during radioactive decay of trace elements within them. Findings: Nanodiamonds in primitive meteorites have a mean size of ~2.6 nm and an abundance reaching up to ~0.15 % by weight. They contain trace noble gases, notably xenon, with an unusual isotopic composition. The latter is reminiscent of the p- and r-processes of nucleosynthesis that are thought to occur during supernova explosions. Our new results show that recoil loss during â decay of implanted 22Na does not exceed what is expected from energy distribution and range-energy relations in matter. While a CVD origin for the diamonds appears likely (but is not assured), the noble gases were probably introduced by ion implantation. Research limitations/implications: The isotopic pattern of Xe contained in nanodiamonds indicates some unconventional types of element synthesis in stars or modification by secondary processes. Recoil loss from nanometer-sized grains during decay of unstable precursor nuclides has been suggested as an explanation, but our experiments do not support this idea. Originality/value: Other processes must be invoked for explanation of the isotopically unusual xenon trapped in meteoritic nanodiamonds. Ion implantation experiments suggest of “trapped” cosmic ray 3He for deriving an age for the diamonds.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.