Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 7

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  zdrowienie
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
PL
Głównym celem niniejszej pracy było poddanie weryfikacji metody relaksacji naprężenia do analizy procesów rekrystalizacji zachodzących po odkształceniu. W artykule przedstawiono wyniki badań relaksacji naprężeń oraz ilościowego pomiaru struktury. W oparciu o uzyskane dane stwierdzono że metoda relaksacji naprężeń pozwala określić kinetykę rekrystalizacji po odkształceniu i wyeliminować wpływ zdrowienia w procesie odbudowy struktury.
EN
The main objective of this work was to verify the stress relaxation method for the analysis of recrystallisation processes occurring after deformation. The article presents the results of stress relaxation and quantitative measurement of the structure. Based on the obtained data, it was found that the stress relaxation method allows to determine the kinetics of recrystallisation after deformation and to eliminate the impact of recovery in the process of structure rebuilding.
PL
W pracy przedstawiono wyniki badań efektów walcowania wysokotemperaturowego taśm ze stopu na osnowie fazy międzymetalicznej Ni3Al z dodatkami stopowymi cyrkonu i boru. Proces odkształcania plastycznego realizowano w dwóch etapach, w temperaturze 1000 i 1100OC z prędkością obwodową walców roboczych 4, 10 i 15 m/min. Efekty przebudowy struktury obserwowano przy użyciu skaningowej mikroskopii elektronowej sprzężonej z układem do analizy dyfrakcji elektronów wstecznie rozporoszonych (EBSD), a także wykonano pomiary twardości. Stwierdzono przebudowę struktury taśm na drodze rekrystalizacji dynamicznej, której udział rósł wraz ze wzrostem prędkości i temperatury walcowania. Najsilniejsze efekty dynamicznej odbudowy struktury (powyżej 50% objętości taśm z parametrem GOS < 2O) obserwowano po drugim etapie walcowania wysokotemperaturowego realizowanego w temperaturze 1100OC z prędkością 15 m/min.
EN
The results of high temperature rolling of Ni3Al-based strips with zirconium and boron addition are shown in the paper. The deformation process was realized by two step rolling at temperature 1000 and 1100OC, with a speed: 4, 10 or 15m/min. The effects of Ni3Al strips structure rebuilding were observed by using a scanning electron microscopy coupled with an electron backscatter diffraction system (EBSD) and a hardness tests were done. The effects of growing up participation of recrystallization with rising a temperature and speed rolling were obtained. The largest effects of dynamic processes of structure recovery (approx. 50% of alloy volume with GOS < 2O) was observed after the second stage of the high temperature rolling conducted at the temperature of 1100°C with the speed of 15 m/min.
PL
Prezentowana praca dokumentuje wpływ wanadu (do 0,2 % wag.) na strukturę, własności mechaniczne i elektryczne prasówki aluminium, wyciskanej z wlewków, krystalizowanych z podwyższoną prędkością (12 K/s w osi wlewnicy). Stwierdzono, że: 1 — powstająca w procesie krystalizacji mikrosegregacja wanadu nie ulega zmianie w procesie homogenizacji i jest „dziedziczona” przez prasówkę; 2 — dodatek wanadu w ilości 0,2 % powoduje — w relacji do aluminium — zmniejszenie o ok. 30 % wielkości podziaren/ziaren w prasówce, co — w synergii z efektem umocnienia roztworowego — skutkuje znaczącym wzrostem własności wytrzymałościowych (R0,2 i Rm, odpowiednio, o ponad 25 % i 15 %); 3 — wraz z wzrostem ilości wanadu obniżeniu ulegają cechy plastyczne aluminium, a oporność elektryczna rośnie w przybliżeniu o 5 × 10–9 Ωm/0,1 % wag. V. Wykazano ponadto, że dodatek wanadu opóźnia procesy zdrowienia odkształconych na zimno stopów aluminium, a dopiero przy większej koncentracji znacząco podwyższa temperaturę rekrystalizacji.
EN
The effect of vanadium addition (up to 0.2 % wt.) on the structure and mechanical and electrical properties of aluminum extrudates, obtained from the ingots solidified at elevated rates (~12 K/s in the axis of the ingot mold) has been presented. It has been found, that: 1 — the microsegregation of vanadium, formed during crystallization, does not change during homogenization process, moreover, it is also present in extrudates; 2 — the vanadium addition reduces the grain/subgrain size (~30 % in AlV0.2 %. with respect to Al) and in the synergy with solid solution strengthening effect leads to significant increase in the strength properties of extruded rods (more than 25 % and 15 % in the value of R0.2 and Rm, respectively); 3 — with increase of vanadium addition the plastic properties of aluminum decrease and the electrical resistance increase with about 5 × 10–9 Ωm/0.1 % wt. V. It was also shown that the addition of vanadium retards the recovery processes of cold-deformed aluminum and, at higher concentration, also increases the recrystallization temperature.
PL
W artykule analizowano zmiany strukturalne i teksturowe zachodzące w materiale poddanym silnemu odkształceniu plastycznemu a następnie wyżarzaniu aż do uzyskania stanu całkowitej rekrystalizacji. Materiałem badawczym był komercyjny stop aluminium AA1050 wycięty z blachy walcowanej na gorąco. Silne odkształcenie plastyczne uzyskano w wyniku przeciśnięcia materiału przez kanał kątowy (matryca ECAP) w zakresie do sześciu przepustów, wg. drogi A — bez rotacji próbki pomiędzy kolejnymi przepustami. Wyżarzanie przeprowadzono w zakresie temperatur od 100 do 350 °C przez 1 godz. Uzyskując różny stopień zaawansowania procesu rekrystalizacji. Zmiany dokonujące się w obrazie mikrostruktury i tekstury stopu AA1050 analizowano z wykorzystaniem dyfrakcji rentgenowskiej i dyfrakcji elektronów wstecznie rozproszonych w skaningowym mikroskopie elektronowym (EBSD/SEM). Uzyskane wyniki jednoznacznie pokazują, iż przemiana tekstury zachodzi w temperaturze około 270 °C, czemu towarzyszy gwałtowny rozrost ziarna. Drobnoziarnista struktura (dśr < 1 μm) wytworzona w procesie odkształcenia jest zachowana do temperatury ok. 200 °C. Powyżej tej temperatury ulega silnemu rozrostowi oraz następuje utrata jednorodności rozkładu wielkości ziaren.
EN
The main aim of the experiment was to analyze the microstructure and texture changes during recrystallization of commercial AA1050 aluminum alloy. The samples were processed by equal channel angular pressing (ECAP) along route A up to six passes and then annealed for 1 hour at temperatures ranged between 100 and 350 °C, to obtain different states of recrystallization. Studies carried out using scanning electron microscopy equipped with high-resolution electron backscattered diffraction facility (EBSD). An additional analysis was made by means of X-ray diffractometer. The obtained results showed that at lower annealing temperatures, the material retains ultra-fine grain structure formed by ECAP. At higher annealing temperatures rapid grain growth appears and transformation of flattened grains into nearly equiaxed ones was observed. The {111} pole figures showed in the deformed and partially recrystallized states two, nearly complementarily oriented texture components. At the temperature of 270 °C these texture components were changed into other two dominant (also complementarily or twin-related) ones.
PL
Analizowano zjawiska zachodzące podczas odkształcania na gorąco i odbudowy mikrostruktury austenitycznej stali chromowo-manganowej i chromowo-nikowej o niskiej EBU. W szczególności przeanalizowano zagadnienia zdrowienia i rekrystalizacji dynamicznej oraz zmiany mikrostruktury po zakończeniu odkształcania.
EN
The phenomena taking place during hot deformation and reconstruction of the microstructure of chromium-manganese and chromium-nickel austenitic steels of low SFE were analyzed. In particular, the problems of recovery and dynamic recrystallization as well as changes of the microstructure after deformation were analyzed.
PL
Naprężenie uplastyczniające mosiądzu CuZn35.3 wyznaczane w próbie skręcania w szerokim zakresie temperatur i prędkości odkształcania było analizowane przy użyciu dynamicznego modelu materiału. Model ten rozpatruje materiał odkształcany w podwyższonych temperaturach jako dyssypator mocy, która wywołuje zmiany strukturalne. Mapa efektywności procesów odkształcania mosiądzu CuZn35.3, reprezentująca dyssypację mocy w funkcji temperatury i prędkości odkształcania, została opracowana i na jej podstawie ustalone zostały obszary, w których zachodzą procesy rekrystalizacji dynamicznej i dynamicznego zdrowienia oraz ustalone zostały optymalne warunki odkształcania.
EN
The flow stress data obtained in torsion test of CuZn35.3 brass at different temperatures and strain rate are analysed using dynamic material's model which considers the workpiece as a power dissipator causing microstructural changes. A processing map representing the efficiency of power dissipation as a function of temperature and strain rate has been established and areas of dynamic recovery and dynamic recrystallization and optimum processing conditions for the brass were determined.
EN
The flow stress data obtained in torsion test of CuSi4.6 silicon bronze at different temperatures and strain rate are analysed using dynamic material's model which considers the workpiece as a power dissipator causing microstructural changes. A processing map representing the efficiency of power dissipation as a function of temperature and strain rate has been established and optimum processing conditions for the brass arc determined.
PL
Naprężenie uplastyczniające, brązu krzemowego CuSi4,6 wyznaczane w próbie skręcania w szerokim zakresie temperatur i prędkości odkształcania, było analizowane przy użyciu dynamicznego modelu materiału. Model ten rozpatruje materiał odkształcany w podwyższonych temperaturach jako dyssypator mocy, który wywołuje zmiany strukturalne. Mapa efektywności procesów odkształcania brązu krzemowego CuSi4,6, reprezentująca dyssypację mocy w funkcji temperatury i prędkości odkształcania, została opracowana i na jej podstawie ustalone zostały obszary, w których zachodzą procesy rekrystalizacji dynamicznej i dynamicznego zdrowienia oraz ustalone zostały optymalne warunki odkształcenia.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.