Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  zdolność ogniochronna
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
RU
Цель: Определение характеристики огнезащитной способности огнезащитного покрытия „Amotherm Steel Wb” расчетно- экспериментальным методом решением обратных задач теплопроводности на основе данных огневых испытаний. Методы: Для определения предела огнестойкости металлических пластин с огнезащитным покрытием использованы экспериментальные методы исследования поведения образцов при нагревании, регламентированных требованиями ДСТУ Б В.1.1-4-98 и ДСТУ-Н-П Б В.1.1–29:2010; математическое и компьютерное моделирование процессов нестационарного теплообмена в системе «металлическая пластина – вспучивающееся огнезащитное покрытие»; определение теплофизических характеристик и характеристики огнезащитной способности исследуемого покрытия. Результаты: Проведены огневые испытания металлических пластин, покрытых огнезащитным составом „Amotherm Steel Wb”, в условиях стандартного температурного режима. На основе полученных данных (температуры с необогреваемой поверхности пластины), решением обратных задач теплопроводности определены теплофизические характеристики образованного огнезащитного покрытия, которые зависят от температуры, и характеристику огнезащитной способности исследуемого покрытия для предела огнестойкости металлической конструкции 30 мин. Выводы: Доказана эффективность вспучивающегося огнезащитного покрытия „Amotherm Steel Wb” и установлена зависимость коэффициента его теплопроводности от температуры в условиях нагрева в испытательной печи металлической пластины с этим покрытием при стандартном температурном режиме. При этом выявлено, что в диапазоне температур от 0°С до 500°С значение коэффициента теплопроводности покрытия падает на порядок по сравнению с исходным значением, и проходит через минимальное экстремальное значение 0,003 Вт/м·К (при температуре 500°С), что объясняется вспучиванием покрытия и увеличением его пористости, а дальше линейно возрастает до начального значения, что объясняется появлением радиационной составляющей в порах покрытия в сочетании с его высокотемпературной усадкой и обугливанием. Выявлена взаимосвязь между толщиной вспучивающегося огнезащитного покрытия „Amotherm Steel Wb” и огнестойкостью металлических конструкций, а также рассчитаны необходимые минимальные толщины такого покрытия от толщины металлической пластины для обеспечения значения предела огнестойкости 30 минут.
EN
Purpose: To examine the fireproof capability of a fire-retardant coating (“Amotherm Steel Wb”), using an experiment-calculation approach to address inverse heat conduction problems during fire tests. Methods: Application of experimental research methods to samples, in accordance with the requirements of National Standards of Ukraine B.V. 1.1.-4-98 and N-P B V.11-29:2010, to examine the behaviour of samples which are exposed to a heating process. Utilising mathematical and computer modelling techniques to processes involving unsteady heat transfer in a procedure “Metal plate – Intumescent Fire Retardant Coating”, to determine thermal characteristics and fireproof capability of examined coating. Results: Fire tests of metal sheets covered by the flame retardant “Amotherm Steel Wb” were performed in standard temperature conditions. Based on derived data (temperature from the unheated sheet surface), with the aid of a solution to the problem of inverse heat conduction, the thermal characteristics of a created fire-retardant coating were determined. The formation of a protective screen depends on temperature levels. The level of protection against fire for a sample metal construction R30 was 30 minutes. Conclusions: The effectiveness of an intumescent coating “Amotherm Steel Wb” was verified. Research revealed a dependence relationship between the heat conduction coefficient and temperature of the metal sheet covered with this coating during heating in the experimental oven at standard temperature conditions. Additionally, it was discovered that within the temperature range from 0°С to 500°С the value of heat conductivity coefficient of coating decreases, compared with the exit value, and achieves the lowest value of 0.003 W/mK (at the temperature of 500°С). This may be explained by bulging of the coating and its increased porosity. Furthermore, the heat conductivity coefficient growth to the initial value adopts a linear pattern which explains the appearance of radioactive elements in the coating pores attributable to high temperature shrinkage and charring. A dependence relationship was identified between the thickness of intumescent coating “Amotherm Steel Wb” and fire-retarding quality of metal constructions. Additionally, the required minimal thickness of the fire retardant covering was calculated to ensure fire resistance parameters for 30 minutes. The required thickness of covering is dependent on the thickness of the metal plate.
PL
Cel: Określenie charakterystyki zdolności do zabezpieczenia przed ogniem powłoki ogniochronnej „Amotherm Steel Wb” z wykorzystaniem obliczeniowo-eksperymentalnej metody rozwiązania odwrotnych zadań przewodzenia ciepła na podstawie danych testów ogniowych. Metody: W celu określenia stopnia odporności ogniowej płyt metalowych pokrytych powłoką ogniochronną wykorzystano eksperymentalne metody badań zachowania się, reglamentowanych wymogami ДСТУ Б В.1.1-4-98 и ДСТУ-Н-П Б В.1.1–29:2010, próbek podczas ich nagrzewania; matematyczne i komputerowe modelowanie procesów niestacjonarnej wymiany ciepła w systemie „płyta metalowa – pęczniejąca powłoka ogniochronna”; określenie termofizycznych charakterystyk oraz charakterystyki zdolności ogniochronnej badanej powłoki. Wyniki: Przeprowadzono testy ogniowe płyt metalowych pokrytych mieszaniną ogniochronną „Amotherm Steel Wb” w standardowych warunkach termicznych. Na podstawie otrzymanych danych (temperatury nieogrzewanej powierzchni płyty), z wykorzystaniem rozwiązania zagadnienia odwrotnego przewodzenia ciepła, określono właściwości termofizyczne powstałej powłoki ogniochronnej, które zależą od temperatury. Opisano charakterystykę zdolności ogniochronnej badanej powłoki dla stopnia odporności ogniowej konstrukcji metalowej wynoszącej 30 minut. Wnioski: Udowodniona została skuteczność pęczniejącej powłoki ogniochronnej „Amotherm Steel Wb” i wykazana została zależność współczynnika przewodzenia przez nią ciepła od temperatury nagrzewanej w piecu eksperymentalnym metalowej płyty pokrytej tego rodzaju powłoką przy standardowych warunkach termicznych. Dodatkowo zauważono, iż w przedziale temperatur od 0°С do 500°С wartość współczynnika przewodzenia ciepła powłoki obniża się w porównaniu z wartością wyjściową i osiąga najniższą wartość 0,003 W/mK (przy temperaturze 500°С), co może być wyjaśnione pęcznieniem powłoki i zwiększeniem jej porowatości, a następnie dalej liniowo rośnie do wartości początkowej, co może wyjaśniać pojawienie się składowej radiacyjnej w porach powłoki w połączeniu z jej kurczeniem się i zwęglaniem przy wysokiej temperaturze. Odkryto zależność między grubością pęczniejącej powłoki ogniochronnej „Amotherm Steel Wb” i odpornością ogniową konstrukcji metalowych, a także obliczono konieczną minimalną grubość takiej powłoki w zależności od grubości płyty metalowej w celu zapewnienia parametru odporności ogniowej na poziomie 30 minut.
RU
Цель: Проведен анализ современных технологий повышения функциональных свойств строительных конструкций, в том числе термомеханических. Обосновано эффективный метод повышения огнестойкости металлических конструкций путем применения огнезащитных покрытий и облицовок, выполняющих функцию теплоизоляционных экранов, которые защищают поверхность конструкции от теплового воздействия во время пожара и увеличивают время достижения предельного состояния по огнестойкости. Целью работы, является экспериментальное исследование пассивных огнезащитых покрытий для металлических конструкций. Методы: Представлена пассивная огнезащита металлических конструкций, т.е. огнезащитное покрытие, которое при воздействии высоких температур не меняет свои физические параметры и обеспечивает огнезащиту благодаря физическим или тепловым свойствам. Проанализировав существующие методы определения огнезащитной способности, проведена идентификация огнезащитной способности эксперементальных образцов известной методикой. Предложена схема размещения термопар на опытных образцах. Оптимизировано размещение термопар на экспериментальных образцах и в печи с целью контроля температуры. Преимуществом данной методики испытания является то, что по ее результатам можно сделать вывод об огнезащитной способности огнезащитных покрытий в зависимости от их толщины защитного слоя без дополнительных математических расчетов. Для экспериментальных исследований было изготовлено два типа образцов из конструкционно-теплоизоляционного газобетона марки D 400 и D 500, а также высокотемпературного вяжущего материала (клей). Результаты экспериментальных исследований показали, что критическая температура нагрева металлических пластин для экспериментальных образцов достигнута. Соответственно время огнезащитной способности газобетонных плиток толщиной 40 мм марки D 400 и D 500 составляет не менее 120 и 110 мин соответственно. Результаты: По результатам, полученным в ходе проведения экспериментальных исследований пассивного огнезащитного покрытия, в соответствии с методикой ДСТУ-Н-П Б В.1.1-29:2010 «Огнезащитная обработка строительных конструкций. Общие требования и методы контролирования», экспериментально установлено время достижения критической температуры на необогреваемой поверхности металлической пластины с огнезащитой из газобетонных плиток толщиной 40 мм при ее испытании в условиях стандартного температурного режима пожара. Обоснованы области применения металлических конструкций в зданиях и сооружениях.
EN
Aim: The authors carried out an analysis of modern technologies with the aim of improving the functional effectiveness of building structures including thermo-mechanical properties. They verified an effective method of increasing fire resistance of metal structures by the use of fire-retardant coverings and sidings which act as thermal insulation screens. These protect the surface of structures from heat exposure during a fire incident and increase the time during which the structure maintains its fire resistance. The purpose of this work is to perform an experimental study of inert fire protection coverings for metallic structures. Methods: The authors described inert protective coverings for metal structures known as fire-retardant coating which, do not change their physical properties under the influence of high temperatures. Because of physical and thermal characteristics such coverings provide protection against fires. After an analysis of established methods used for determining fire resistance capability, the authors utilised one such method to test a sample covering. Thermo-couples were positioned on experimental structures and in the furnace so that temperature control could be maintained. Subsequently a different thickness of covering was applied to the sample and results observed. The benefit of such an approach rests with the way results can be obtained and conclusions drawn, without additional mathematical calculations. For the benefit of this study two samples were prepared, made up from heat-insulating construction aerated concrete D 800 and D 500, and a high-temperature binder (adhesive). Research results revealed that the temperature limits for heated metal plates were achieved. Corresponding protection time for aerated concrete plates D 400 and D 500, at thickness level of 40 mm, was maintained for at least 120 and 110 minutes respectively. Results: According to results obtained during research of inert fire-retardant coverings, performed in accordance with procedures ДСТУ-Н-П Б В.1.1-29:2010 “Fire retardant treatment of building constructions. General requirements and methods of control”, it was possible to determine the timescale required to achieve critical temperature levels on the surface of an unheated metal plate, covered by fire retardant aerated concrete tiles at a thickness of 40 mm, in standard temperature fire conditions. The application of this covering to metal structures in building construction was justified.
PL
Cel: Przeprowadzono analizę nowoczesnych technologii mających na celu zwiększenie skuteczności właściwości funkcjonalnych konstrukcji budowlanych, w tym termomechanicznych. Uzasadniono zastosowanie efektywnej metody zwiększenia odporności na ogień konstrukcji metalowych poprzez zastosowanie powłok i okładzin ognioodpornych, pełniących funkcję ekranów termoizolacyjnych, które chronią powierzchnię konstrukcji przed oddziaływaniem ciepła w czasie pożaru oraz wydłużają czas osiągnięcia granicznych wartości odporności ogniowej. Celem pracy jest przeprowadzanie badania eksperymentalnego pasywnych powłok ogniochronnych konstrukcji metalowych. Metody: Opisano pasywne zabezpieczenie ogniochronne konstrukcji metalowych, tj. powłokę ogniochronną, która pod wpływem wysokich temperatur nie zmienia swoich parametrów fizycznych, a także dzięki swoim właściwościom fizycznym i cieplnym zapewnia ochronę przeciwpożarową. Po przeanalizowaniu funkcjonujących metod określania zdolności ogniochronnej przeprowadzono za pomocą znanej metodologii identyfikację właściwości przeciwpożarowych próbek. Zaproponowano schemat rozmieszczenia termopar na próbkach eksperymentalnych. Zoptymalizowano rozmieszczenie termopar na próbkach eksperymentalnych oraz w piecu celem kontroli temperatury. Przewagą danej metodologii badania jest to, iż na podstawie jej wyników można wyciągnąć wnioski o właściwościach przeciwpożarowych powłok ogniochronnych w zależności od grubości ich warstwy ochronnej bez dodatkowych obliczeń matematycznych. Na potrzeby badań eksperymentalnych przygotowano dwa rodzaje próbek z konstrukcyjno-termoizolacyjnego gazobetonu marki D 400 i D 500 oraz wysokotemperaturowego materiału wiążącego (kleju). Wyniki badań eksperymentalnych pokazały, że krytyczna temperatura grzania metalowych tafli próbek eksperymentalnych została osiągnięta. Odpowiednio czas zdolności ognioochronnej bloczków gazobetonowych o grubości 40 mm, marek D 400 i D 500 wynosi nie mniej niż odpowiednio 120 i 110 min. Wyniki: Na podstawie wyników, otrzymanych w rezultacie badań eksperymentalnych pasywnej powłoki ogniochronnej, przeprowadzonych zgodnie z metodyką ДСТУ-Н-П Б В.1.1-29:2010 „Ogniochronna obróbka konstrukcji budowlanych. Wymagania ogólne i metody kontroli”, określono czas osiągnięcia krytycznej temperatury na powierzchni nieogrzewanej metalowej tafli pokrytej zabezpieczeniem ogniochronnym z gazobetonowych bloczków o grubości 40 mm podczas badań w warunkach standardowej temperatury przy pożarze. Uzasadniono obszar zastosowania konstrukcji metalowych w budynkach i budowlach.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.