Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  zanieczyszczenie mgłą
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
This study applies China’s air pollution and urban development data from 2007 to 2021, and the temporally weighted regression (GTWR) model to analyze the spatiotemporal distribution characteristics of air pollution influencing factors. It was found that the temporal evolution of air pollution in different regions is highly consistent but its degree varies with the pollution severity. The impact of urban development on air pollution has significant spatiotemporal heterogeneity. Overall, urban green space area (UGSA), urban population density (UPD), and domestic waste removal volume (DWRV) have positive impacts, while urbanization rate (UR), per capita disposable income of urban residents (URI), and public vehicles per every 10 000 people (PTV) have negative impacts. The impact of USGA, UR, and URI is mainly visible in western provinces, the impact of UPD in northeast provinces, the impact of DWRV in eastern and central provinces, and the impact of PTV in eastern provinces.
EN
The increasing population and industrialization are the reasons for environmental and air pollution around the world. Air pollution is a major threat, especially to human health, both biological and economic. Therefore, determining the properties of air pollutants is very important for researchers and practitioners working in this field. In this study, the statistical distributions of some air pollutants are determined using the Gumbel, Weibull, generalized Pareto, log-normal, gamma, Rayleigh, and inverse Weibull distributions. The data was obtained from stations Boyabat and Merkez stations in Sinop province in 2017. The Kolmogorov–Smirnov test was used to determine the underlying distributions of the air pollution data. Then we use the root mean square error and coefficient of determination criteria to determine which distribution better fits the air pollution data. Finally, numerical results have shown that the generalized Pareto distribution demonstrates the best overall modeling performance, followed by log-normal and inverse Weibull distributions.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.