Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 5

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  wytłaczanie hydrostatyczne
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The research presented in this paper concerns the influence of the rate of plastic deformation generated directly in the processes of severe plastic deformations on the microstructure and properties of three metals: copper, iron and zinc. The equal channel angular pressing (ECAP) method was used, and it was performed at a low plastic deformation rate of ∼ 0.04 s−1. The high plastic strain rate was obtained using the hydrostatic extrusion (HE) method with the deformation rate at the level of ∼ 170 s−1. For all three tested materials different characteristic effects were demonstrated at the applied deformation rates. The smallest differences in the mechanical properties were observed in copper, despite the dynamic recrystallization processes that occurred in the HE process. In Armco iron samples, dynamic recovery processes in the range of high plastic deformation rates resulted in lower mechanical properties. The most significant effects were obtained for pure zinc, where, regardless of the method used, the microstructure was clearly transformed into bimodal after the ECAP process, and homogenized and refined after the HE process. After the HE process, the material was transformed from a brittle state to a plastic state and the highest mechanical properties were obtained.
2
Content available remote Microstructure evolution of pure titanium during hydrostatic extrusion
EN
Regarding severely deformed materials of potentially high applicability in various industry branches, their microstructure evolution during processing is of vast significance as it enables to control or adjust the most essential properties, including mechanical strength or corrosion resistance. Within the present study, the microstructure development of commercially pure titanium (grade 2) in the multi-stage process of hydrostatic extrusion has been studied with the use of the well-established techniques, involving electron backscatter diffraction as well as transmission electron microscopy. Microstructural deformation-induced defects, including grain boundaries, dislocations, and twins, have been meticulously analyzed. In addition, a special emphasis has been placed on grain size, grain boundary character as well as misorientation gradients inside deformed grains. The main aim was to highlight the microstructural alterations triggered by hydroextrusion and single out their possible sources. The crystallographic texture was also studied. It has been concluded that hydrostatically extruded titanium is an exceptionally inhomogeneous material in terms of its microstructure as evidenced by discrepancies in grain size and shape, a great deal of dislocation-type features observed at every single stage of processing and the magnitude of deformation energy stored. Twinning, accompanied by grain subdivision phenomenon, was governing the microstructural development at low strains; whereas, the process of continuous dynamic recrystallization came to the fore at higher strains. Selected mechanical properties resulting from the studied material microstructure are also presented and discussed.
EN
The methods of severe plastic deformation (SPD) of metals and metal alloys are very attractive due to the possibility of refinement of the grains to nanometric sizes, which facilitates obtaining high mechanical properties. This study investigated the influence of SPD in the process of hydrostatic extrusion (HE) on the anisotropy of the mechanical properties of the CuCrZr copper alloy. The method of HE leads to the formation of a characteristic microstructure in deformed materials, which can determine their potential applications. On the longitudinal sections of the extruded bars, a strong morphological texture is observed, manifested by elongated grains in the direction of extrusion. In the transverse direction, these grains are visible as equiaxed. The anisotropy of properties was mainly determined based on the analysis of the static mini-sample static tensile test and the dynamic impact test. The obtained results were correlated with microstructural observations. In the study, three different degrees of deformation were applied at the level necessary to refine the grain size to the ultrafine-grained level. Regardless of the applied degree of deformation, the effect of the formation of a strong morphological texture was demonstrated, as a result of which there is a clear difference between the mechanical properties depending on the test direction, both by the static and dynamic method. The obtained results allow for the identification of the characteristic structure formed during the HE process and the more effective use of the CuCrZr copper alloy in applications.
4
EN
A method has been developed for determining residual stress based on displacement fields near drilled holes analyzed using 3D digital image correlation. Finite element modeling was used to determine corrections for analytical equations describing displacement fields near the blind holes, which made it possible to determine the residual stress distribution over a wide range of hole depth-to-hole diameter ratios and various areas of displacement field measurements using inverse method iterative calculations. The proposed method eliminates many drawbacks of traditional procedure based on strain gauges as hole eccentricity sensitivity and requirement of the relatively large span between holes. The method and testing setup, build-up of generally available components, were used to determine the residual stress distribution for 316 LVM samples processed by two methods from the large deformation group: hydrostatic extrusion (HE) and high-pressure torsion (HPT), by drilling 1.75 and 0.58-mm-diameter blind holes, respectively. In the case of the measurements performed on the surface of a HE-processed 16 mm bar cut along its diameter, a gradual change was revealed-from a compressive to a tensile residual stress distribution (from ~ − 300 MPa in the center to 400 MPa in 4 mm distance from the edge) in the longitudinal direction, with near-zero values in the radial direction. Moreover, the method was also adapted to perform measurements on the outside surface of the bar, which gave results consistent with those taken along the radius profile (~ 600 MPa longitudinal stress). Measurements on the top surface of a cylinder 10 mm in diameter and 1 mm high processed by HPT showed a high compressive residual stress in the center and a dominant shear component for the holes drilled at different distances from the center.
EN
In the current research the hydrostatic extrusion (as one of the most common method of grain refinement) of the commercial 1.4462 duplex stainless steel was carried out using several reduction stages leading to a cumulative deformation strain ɛ = 1.4, and then ɛ = 3.8. The extrusion process has led to a change of microstructure and texture of the investigated material as was expected. Moreover, these changes were accompanied by improvements in mechanical properties measured by the nanohardness. The aim of this research was the characterization of the texture, residual stress and mechanical properties after subsequent stages of deformation.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.