Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  wysoka temperatura odkształcenia
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Tested Al-5Co and Al-5Mg-5Co materials were manufactured using a common ingot metallurgy (IM) and rapid solidification (RS) methods combined with mechanical consolidation of RS-powders and hot extrusion procedures. Mechanical properties of as-extruded IM and RS alloys were tested by compression at temperature range 293-773 K. Received true stress vs. true strain curves were typical for aluminum alloys that undergo dynamic recovery at high deformation temperature. It was found that the maximum flow stress value for Al-5Mg-5Co alloy was much higher than that for Al-5Co, both for IM and RS materials tested at low and intermediate deformation temperatures. The last effect results from the solid solution strengthening due to magnesium addition. However, the addition of 5% Mg results also in the reduction of melting temperature. Therefore, the flow stress for Al-5Mg-5Co alloy was relatively low at high deformation temperatures. Light microscopy observations revealed highly refined structure of RS materials. Analytical transmission electron microscopy analyses confirmed Al9Co2 particles development for all tested samples. Fine acicular particles in RS materials, ∽1μm in size, were found to grow during annealing at 823K for 168h. As result, the hardness of RS materials was reduced. It was found that severe plastic deformation due to extrusion and additional compression did not result in the fracture of fine particles in RS materials. On the other hand, large particles observed in IM materials (20μm) were not practically coarsened during annealing and related hardness of annealed samples remained practically unchanged. However, processing of IM materials was found to promote the fracture of coarse particles that is not acceptable at industrial processing technologies.
PL
W artykule przedstawiono wyniki badań stopów Al-5Co i Al-5Co-5Mg, które zostały przygotowane metodą metalurgii konwencjonalnej (IM), oraz metodą szybkiej krystalizacji (RS) połączonej z mechaniczną konsolidacją szybko-krystalizowanych proszków i wyciskaniem na gorąco. Ocenę własności mechanicznych wyciskanych stopów IM oraz RS wykonano za pomocą prób ściskania w zakresie temperatury 293-773K. Przebieg krzywych σt -εt dla badanych materiałów jest typowy dla stopów aluminium ulegającym zdrowieniu dynamicznemu. Naprężenie maksymalne stopów Al-5Mg-5Co jest znacznie wyższe niż w stopach Al-5Co zarówno wykonanych metodą IM jak i RS. Wraz ze wzrostem temperatury ściskania maleje wpływ umocnienia roztworowego magnezu na własności badanych stopów. Podczas odkształcania w 623K-773K naprężenie uplastyczniające dla stopu Al-5Co jest większe niż dla Al-5Co-5Mg. Wskazano, że przyczyną może być obniżanie się temperatury topnienia pod wpływem dodatku magnezu (zwiększenie temperatury homologicznej w próbach odkształcania). Obserwacje strukturalne materiałów po szybkiej krystalizacji wykonane z użyciem mikroskopii optycznej wykazały występowanie drobnoziarnistej struktury. Badania wykonane z użyciem transmisyjnej mikroskopii elektronowej potwierdziły występowanie we wszystkich badanych próbkach wydzieleń typu Al9Co2. Drobne wydzielenia w stopach RS o początkowej wielkości poniżej 1μm ulegają rozrostowi w czasie wyżarzania przez 168h w 823K, co powoduje zmniejszenie twardości szybko-krystalizowanych materiałów. Korzystna cecha tych materiałów jest m.in. ich zwiększona podatność na odkształcenie, która przejawia się brakiem pękania wydzieleń wskutek dużych odkształceń plastycznych wskutek wyciskania i późniejszego ściskania próbek. W materiałach IM, w których wielkość cząstek przekraczała 20μm, podczas wyżarzania nie obserwowano zauważalnego efektu rozrostu wydzieleń, co się wiąże z brakiem istotnych zmian twardości stopu podczas wyżarzania. Jednakże występowanie tak dużych cząstek po procesie IM jest nie do zaakceptowania w przemysłowych procesach przetwórstwa metali ze względu na pękanie wydzieleń podczas przeróbki, co na ogół prowadzi do makroskopowego pękania wyrobów.
EN
The paper presents the results of microstructure evolution studies of hard magnetic FeCr22Co15 alloy deformed until destruction by tension and torsion in the temperature range 725-850ºC. The temperatures and deformation rates resulted from the condition of superplasticity occurrence in the Fe-Cr-Co alloys. Observations of the longitudinal sections of the deformed samples in the scanning electron microscope showed the formation of a weak gradient microstructure with the highest grain refinement in the surface layer of the material. Increasing the deformation temperature from 725 to 850 ºC increased the homogeneity of the deformation along the tensile axis of the sample. It also brought about the increase of grain size and slight increase of the thickness of fine grains in the surface layer. The precipitation of the intermetallic σ-phase was also observed with its maximum amount in the zones of the highest deformation.
XX
Praca przedstawia wyniki badań ewolucji mikrostruktury magnetycznie twardego stopu FeCr22Co15 poddanego odkształceniu poprzez rozciąganie i skręcanie próbek do ich zerwania w przedziale temperatur 725-850ºC. Temperatury i prędkości odkształcenia odpowiadały warunkom nadplastycznosci badanego stopu. Obserwacja mikrostruktury na przekroju podłużnym próbek w skaningowym mikroskopie elektronowym wykazała tworzenie się mikrostruktury o słabym charakterze gradientowym z minimalnym rozmiarem ziaren w warstwie wierzchniej materiału. Zwiększenie temperatury odkształcenia od 725 do 850ºC spowodowało polepszenie jednorodności odkształconej mikrostruktury wzdłuż osi rozciągania próbek oraz zwiększenie rozmiaru ziaren fazy α. Stwierdzono również, że grubość warstwy wierzchniej o drobnym ziarnie w niewielkim stopniu zależy od temperatury odkształcenia. Ponadto stwierdzono obecność fazy międzymetalicznej σ (Fe-Cr), której największa ilość zaobserwowano w warstwie wierzchniej materiału.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.