Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 15

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  wymiennik gruntowy
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
PL
Polityka klimatyczna Unii Europejskiej oraz coraz szybsze tempo dekarbonizacji europejskiej gospodarki stwarza nowe możliwości dla wielu młodych ludzi podejmujących studia techniczne związane z OZE. Wiele renomowanych firm wytwarzających urządzenia grzewcze wykorzystujące paliwa kopalne podjęło już decyzję o zmianie profilu i rozpoczęciu produkcji pomp ciepła. Nowoczesne budynki powinny być ekologiczne, a dekarbonizacja gospodarki ma być wspierana przez energetykę jądrową, o której coraz więcej informacji pojawia się w mediach. Wykorzystanie ciepła z gruntu, połączone z zasilaniem sprężarek zieloną energią elektryczną, jest realnym sposobem transformacji energetycznej ogrzewnictwa zapewniającym także skuteczną eksploatację autonomicznych budynków, które mogą także funkcjonować bez zasilania z sieci elektrycznej. Magazynowanie energii w postaci wodoru lub w bateriach elektrycznych wymaga minimalizacji jej zużycia, a właśnie gruntowe pompy ciepła umożliwiają największe ograniczenie zużycia energii pobieranej z sieci. Jednak wciąż praktyczna wiedza o gruntowych pompach ciepła jest domeną niewielu specjalistów z firm instalacyjnych o wieloletniej tradycji lub pracowników naukowych. Cel. Głównym celem autora artykułu było to, aby znajdujące się w nim informacje były zrozumiałe i przydatne dla każdego adepta technologii gruntowych pomp ciepła. Treść artykułu powinna w prosty sposób przybliżyć problematykę właściwego doboru gruntowych pomp ciepła przez osoby nie posiadające gruntownej wiedzy w tej dziedzinie. Publikacja, oprócz podania, w przystępnej formie podstawowych informacji, ma umożliwić i zachęcić, szczególnie studentów, do dalszego samodzielnego kształcenia z wykorzystaniem dostępnej bibliografii. Metody. Artykuł został przygotowany tak, aby umożliwić poznanie i zrozumienie zasady działania gruntowych pomp ciepła. Na podstawie studium przypadku ‒ hali produkcyjno-magazynowej, wykonano analizę porównawczą 3 rodzajów odbiorników ciepła stanowiących górne źródle ciepła. Porównano wpływ głębokości pionowego, gruntowego wymiennika ciepła na parametry pracy pompy ciepła oraz przedstawiono bilanse energetyczne analizowanego układu. Wnioski i odniesienie do praktyki. Dolne źródło ciepła ma największy wpływ na niezawodną i efektywną eksploatację instalacji gruntowej pompy ciepła. Poprawnie zwymiarowany wymiennik gruntowy zapewnia wysoką wydajność układu, a równocześnie błędy popełnione w fazie projektowania lub doboru wymiennika mogą być przyczyną jego trwałego uszkodzenia, a także zanieczyszczenia wód gruntowych. Zastosowanie odpowiednich odbiorników ciepła (górnego źródła) ogranicza koszty eksploatacji budynku, a jednocześnie przy ich doborze należy zwrócić uwagę na praktyczne aspekty eksploatacji instalacji, takie jak przerwy w zapotrzebowaniu na ciepło, zapotrzebowanie na chłód, komfort cieplny użytkowników budynku czy możliwości finansowe inwestora.
EN
The climate policy of the European Union and the increasing pace of decarbonization of the European economy create new opportunities for many young people pursuing technical studies related to renewable energy sources. Many renowned companies producing heating devices that use fossil fuels have already decided to change their profile and start producing heat pumps. Modern buildings should be ecological, and decarbonization of the economy should be supported by nuclear energy, which is increasingly being discussed in the media. The use of heat from the ground, combined with the supply of compressors with green electrical energy, is a real way of energy transformation in heating, also ensuring effective operation of autonomous buildings that can function without power from the electricity grid. Energy storage in the form of hydrogen or electric batteries requires minimizing its consumption, and ground source heat pumps enable the greatest reduction in energy consumption from the grid. However, practical knowledge of ground source heat pumps is still the domain of a few specialists from installation companies with many years of tradition or scientific workers. Objective. The main goal of the article was for the information contained within it to be understandable and useful for every novice of ground source heat pump technology. The content of the article should provide basic information in a simple way to approach the issue of proper selection of ground source heat pumps for people who do not have in-depth knowledge in this field. In addition to providing basic information in an accessible format, the publication should allow and encourage, especially students, to further self-education using the available bibliography. Methods. The article was prepared to enable understanding of the principles of operation of ground source heat pumps. Based on a case study of a production-storage hall, a comparative analysis of three types of heat receivers serving as the upper source of heat was performed. The impact of the depth of the vertical ground heat exchanger on the heat pump’s performance parameters was compared, and energy balances of the analyzed system were presented. Conclusions and practical implications. The lower source of heat has the greatest impact on reliable and efficient operation of ground source heat pump installations. A correctly dimensioned ground heat exchanger ensures high system efficiency, while errors made in the design or selection of the exchanger can cause its permanent damage and groundwater pollution. The use of appropriate heat receivers (upper sources) reduces building operation costs, but at the same time, practical aspects of installation operation should be considered when selecting them, such as breaks in heat demand, cooling demand, user thermal comfort, or investor’s financial capabilities.
PL
Stojąc w obliczu wprowadzenia obowiązku stosowania europejskich przepisów dotyczących budynków oraz ich efektywności energetycznej po 2020 roku, czyli konstruowania budynków w standardach „nZEB” (Nearly Zero-Energy Buildings) nieuniknione staje się wymaganie jak najszerszego zastosowania w nich rozwiązań opartych na pozyskaniu energii z odnawialnych jej źródeł. Jednym z nich, coraz powszechniej stosowanym w instalacjach wentylacji mechanicznej budynków jest Gruntowy Powietrzny Wymiennik Ciepła (GPWC). Jest to stosunkowo proste w budowie i działaniu rozwiązanie, w którym powietrze wentylujące przestrzeń budynku jest czerpane z zewnątrz poprzez rurowy wymiennik ciepła zagłębiony w gruncie i dzięki stosunkowo stabilnej jego temperaturze powietrze dopływające do centrali wentylacyjnej jest wstępnie podgrzewane w okresie zimowym i ochładzane w okresie letnim. Dodatkowo, w okresie występowania wysokich temperatur i potrzeby chłodzenia budynków, wykroplenie wilgoci zachodzące w GPWC pozwala na zmniejszenie nakładów energii na chłodzenie i osuszanie powietrza w centrali wentylacyjnej. W artykule przedstawiono koncepcję zastosowania GPWC w budynku użyteczności publicznej (przedszkole), w którym ilość i jakość powietrza wentylacyjnego odgrywają ważną rolę w tworzeniu klimatu wewnętrznego. Zasadniczą część artykułu stanowi opis modelu matematycznego pozwalającego na wyznaczanie parametrów powietrza na wylocie GPWC przy okresowo zmiennych parametrach powietrza zewnętrznego (na wlocie do wymiennika). Jest to pierwszy etap szerzej zakrojonych prac autorów mających na celu kompleksową analizę zarówno jakościową jak i ilościową rozwiązania w opozycji do innych rozwiązań wentylacji mechanicznej z odzyskiem ciepła.
EN
Facing implementation of the European legislation concerning EPBD and energy efficiency (EED) directives, which demands, by the year 2020 construction of the so-called nZEB (Nearly Zero-Energy Buildings) force the designers to use new energy-saving technologies in the buildings’ constructions and installations. Particular attention should be paid then onto looking for opportunities of using energy from renewable resources. One of the solutions enabling the acquisition of such energy is ground-coupled heat exchanger. It is relatively simple installation, both in design and operation dedicated for heating (and/or cooling) of the air flowing through it, using the ambient heat stored in the soil. The use of ground-to-air heat exchanger (GEX) allows to stabilize temperature of the outside air supplied to the air handling unit during the season. The paper presents the concept of GEX used in a kindergarten building. An 1-D numerical model allowing simulations of the parameters of the air flowing through the heat exchanger was developed to achieve the energetic performance of the GEX all over the yearly operation. The main goal of presented model was to perform the energetic and economic comparison of the ventilation system equipped with GEX with standard Air Handling Unit equipped with counter flow recuperator supported with electric preheater.
EN
This work concerns the numerical research on the ground coupled compressor heat pump quasi-steady intermittent work. To reach the goal 0D-3D level programming coupling was applied. The work contains also the analysis of the influence of a single Field type vertical ground heat exchanger on the surrounding ground. Numerical model was validated using Bose-Parker’s algorithm and penetration theory modified by J. Mikielewicz. In order to determine the ground’s ability to thermal regeneration, CFD simulations of the Field type ground heat exchanger were carried out.
PL
Niniejsza praca poświęcona została badaniom numerycznym quasi-stacjonarnej przerywanej pracy gruntowej sprężarkowej pompy ciepła. By osiągnąć zamierzony cel sprzęgnięto programowanie na poziomie 0D i 3D. W pracy zawarto również analizę szerokości strefy wpływu pojedynczego GWCF. Powyższe należy rozumieć jako obszar termicznego oddziaływania na grunt pionowego współosiowego gruntowego wymiennika ciepła. Walidacja modelu numerycznego została przeprowadzona w oparciu o algorytm Bosego-Parkera oraz teorię penetracji zmodyfikowaną przez J. Mikielewicza. Chcąc określić zdolność gruntu do termicznej regeneracji przeprowadzono symulacje CFD, których wyniki załączono w niniejszej pracy.
PL
W artykule dokonano analizy techniczno-ekonomicznej zastosowania gruntowej i powietrznej pompy ciepła pokrywających zapotrzebowanie na ciepło budynku jednorodzinnego. Obciążenie cieplne budynku związane ze stratami ciepła przez przegrody zewnętrzne oraz wentylację grawitacyjną obliczono zgodnie z normą PN-EN 12831. W budynku zastosowano niskotemperaturowe ogrzewanie płaszczyznowe w postaci ogrzewania podłogowego, którego rozmiary obliczono zgodnie z normą PN-EN 1264. Kierując się zapotrzebowaniem na ciepło budynku dobrano gruntową pompą ciepła o katalogowej nominalnej mocy grzewczej wynoszącej 13,9 kW, oraz powietrzną pompę ciepła o katalogowej mocy nominalnej wynoszącej 9,4 kW. Założono, że gruntowa pompa ciepła będzie eksploatowana w trybie monowalentnym, natomiast powietrzna pompa ciepła w trybie monoenergetycznym biwalentnym. Praca powietrznej pompy ciepła poniżej temperatury biwalentnej wspomagana będzie grzałką elektryczną o mocy nominalnej równej 6 kW umieszczonej w zasobniku buforowym. W obu przypadkach założono sterowanie instalacji w funkcji temperatury otoczenia (sterowanie pogodowe). Założono, że praca powietrzną pompy ciepła poniżej temperatury otoczenia <-7⁰C (temperatury biwalentnej) wspomagać będzie grzałka elektryczna. Dokonano analiz: kosztów inwestycji, uzyskanych efektów energetycznych oraz kosztów eksploatacyjnych obu rozwiązań. Analizując koszty inwestycji obu rozwiązań, ze względu na koszt wymiennika gruntowego instalacja gruntowej pompy ciepła w porównaniu z powietrzną jest droższa. Zarówno gruntowa jak i powietrzna pompa ciepła wspomagana grzałką elektryczną załączana poniżej temperatury biwalentnej pokrywa zapotrzebowanie na ciepło budynku. Z dokonanych analiz wynika, że koszt eksploatacji gruntowej pompy ciepła jest niższy niż pompy powietrznej. Jednakże analizując koszty inwestycyjne i eksploatacji obu instalacji w okresie 20 lat okazuje się, że bardziej ekonomiczne jest zainstalowanie powietrznej pompy ciepła.
EN
In paper was presented technical and economic analysis used ground heat pump and airwater heat pump covering the heat demand of residential building. Heat demand of residential building with included heat losses by wall and ventilation was calculated according to norm PNEN 12831. In the analyzed building uses underfloor heating. In the analyzed building uses underfloor heating with size calculated according norm PN-EN 1264. knowing heat demand of residential building selected model of ground heat pump which nominal heating power is 13,9 kW, and air heat pump which nominal power heating is 9,4 kW. Assume that the ground heat pump will be exploitation in the mono energetic mode while the air heat pump will be exploitation in mono energetic bivalent mode. Air heat pump below bivalent ambient temperature will assisted by electrical heater about nominal power 6 kW. Electrical heater was installed in buffer tank. in both cases assumed that control of work of installation will be realized in function of ambient temperature. Assumed that work of air heat pump below ambient temperature <-7⁰C (bivalent temperature) will assisted by electrical heater. Analysis of investment cost, energetic effects and exploitation cost has been made. Analysing of investments cost of both conceptions because of the cost of ground heat exchanger, installation of ground heat pump is more expensive than air heat pump. Heat demand of residential building is covered by a ground heat pump and air heat pump assisted by electric heater which is working below bivalent ambient temperature too. Result of economic analisys is that exploatation cost of ground heat pump is lower than air heat pump, but analisying investments cost and exploatation cost of both systems in twenty years, more economical is instalation air heat pump than ground heat pump.
PL
Czerpanie energii z gruntu powinno być rozważane jako element instalacji, który przynosi korzyści energetyczne. Należy jednak dokładnie przemyśleć formę wymiany ciepła z gruntem. Popularnym rozwiązaniem jest rurowy wymiennik powietrze – grunt, coraz częstsze jest też umieszczanie tego wymiennika pod budynkiem. W artykule przedstawiono argumenty przytaczane w celu uzasadnienia takiej instalacji wymiennika oraz proste obliczenia, które przemawiają na niekorzyść tego rozwiązania.
EN
Using ground energy should be considered as an installation element giving some energy savings. The way of doing so must be however carefully investigated. The earth-to-air heat exchanger is a very popular solution and recently the pipes placed under the building gain much attention. The paper presents the opinions used to support such an idea and the discussion based on simple calculations discrediting the heat exchanger under the building.
PL
W pracy przedstawiono metodę poprawy warunków wymiany ciepła w sondzie gruntowej typu U, stosowanej w sprężarkowych pompach ciepła. Zaprezentowano, sprawdzoną w warunkach rzeczywistych, nową technologię ułożenia sondy gruntowej. Zaproponowano modyfikacje konstrukcyjne. Przedstawiono wyniki badań eksperymentalnych, rozkładu temperatury i wydajności cieplnej. Wyniki porównano z danymi literaturowymi przedstawianymi przez producentów i instalatorów sond gruntowych.
7
Content available remote Chłód i ciepło z gruntu. Część 1
EN
This paper presents the results of a study conducted in 1991 and 2006 on a non-membrane ground heat and mass exchanger. The obtained results indicate that under similar operating conditions, the increase in air temperature at the exchanger outlet in the winter fell by approximately 16.5% after 15 years of operation. Relative humidity remained at a similar level within the range of 74-80% which corresponds to standard requirements. In the summer, air cooling efficiency was lower by 17% and air humidity was lower by 5%.
PL
W artykule przedstawiono wyniki badań przeprowadzonych w latach 1991 i 2006 na gruntowym bezprzeponowym wymienniku ciepła i masy. Stwierdzono, że w porównywalnych warunkach pracy urządzenia, zimą, przyrost temperatury powietrza na wyjściu z wymiennika był o około 16,5% mniejszy niż przed 15 laty. Wilgotność względna utrzymywała się na podobnym poziomie i wynosiła 74-80%, co odpowiada wymogom normatywnym. Latem schłodzenie powietrza było mniej efektywne o 17%, a nawilżanie powietrza niższe o 5%.
PL
Opisano doświadczenia związane z użytkowaniem instalacji grzewczej wykorzystującej pompę ciepła i wymiennik gruntowy w systemie c.o. i c.w.u. Na podstawie kilkuletnich obserwacji tego rozwiązania porównano koszty ogrzewania z systemami opartymi na innych źródłach energii. Sformułowano wnioski dotyczące wyboru nośnika energii do celów grzewczych.
EN
The experiments, connected with the usage of a heating installation with a heat pump and ground exchanger in a central heating system and a central usable water system, are described. The heating costs of the systems were compared with the costs of systems based on other energy sources. The conclusions, concerning the selection of an energy carrier for the heating purpose, have been formulated.
PL
Praca dotyczy modelowania numerycznego przepływu ciepła wgruncie w otoczeniu rur poziomego gruntowego wymiennika ciepła pompy grzejnej zainstalowanego na terenie polderów, do których jest zrzucana woda o podwyższonej temperaturze z oczyszczalni ścieków. Omówiono metodę obliczeń pól temperatury w rozpatrywanym układzie, przedstawiono rezultaty tych obliczeń, jak również obliczeń jednostkowego strumienia ciepła pobieranego od gruntu przez rury wymiennika. Przeanalizowano wpływ infiltracji gruntu przez wodę ściekową na strumień ciepła przejmowanego w wymienniku.
EN
Numerical technique and obtained results of numerical calculations for underground horizontal heat exchanger of heat pump are presented in the paper. The analysed ground heat exchanger is located in the region of waste dumping from a sewage-treatment plant. Determination of the temperature distributions in the domain pertinent to the exchanger pipes, as well as heat flux densities transferred from considered ground was the main aim of the calculations. Influence of the water flow in ground on the heat flux transferred in the exchanger is also analysed.
PL
Przedstawiono przykład wykorzystania całorocznej analizy energetycznej budynku biurowego „Tulipan", jako podstawy do wymiarowania i ekonomicznego uzasadnienia proponowanych rozwiązań technicznych. Omówiono przykładowe profile zapotrzebowania na poszczególne nośniki energii oraz profile pracy podstawowych urządzeń układu. Przedstawiono bilans energetyczny budynku oraz pracy układu trigeneracyjnego, a także wyniki analizy ekonomicznej, która wykazała opłacalność stosowania tego rodzaju rozwiązań.
EN
An application example of the annual power analysis of TULIP AN office building is presented as a basis for dimensioning and economic justification of proposed technical solutions. The ESPr program was used for power simulation of the building. The results obtained were used for work simulation of trigenerative power supply system of the building. The building is supplied with the natural gas and co-operating with a power network. The co-operation is based on selling the energy surplus and energy consuming during periods of maximum power demand. The outer air used in an air conditioning system is heated or cooled additionally in a ground heat exchanger. The paper presents examples of basic requirement profiles for respective energy carriers. Operation profiles of main parts of the system are also described. The energy balance of the building is given as well as trigenerative system operation includinhg the results of an economic analysis. The latter shows effectiveness of solutions presented.
PL
Na podstawie obliczonej wartości współczynnika efektywności, wykonano uproszczoną analizę ekonomiczną atrakcyjności centrali z pompą ciepła, w porównaniu z kotłownią gazową (gaz GZ 50), olejową oraz z ogrzewaniem elektrycznym. W celu uzyskania pełnego obrazu kosztów inwestycji, w obliczeniach został uwzględniony koszt wykonania instalacji wewnętrznej ogrzewania, gdyż w przypadku pompy ciepła, temperatura wody zasilającej instalację centralnego ogrzewania nie powinna przekroczyć 50 stopni Celsjusza, co oznacza istotne zwiększenie powierzchni ogrzewalnej grzejników.
PL
Przybliżono możliwości i perspektywy pozyskiwania naturalnej energii odnawialnej dla wentylacji, klimatyzacji (a nawet ogrzewania budynków) na podstawie rozwiązania wg patentu Politechniki Wrocławskiej.
PL
W pracy przedstawiono rezultaty analizy procesów cieplnych zachodzących w obszarze wokół gruntowego pionowego wymiennika ciepła pompy grzejnej. Rezultatem obliczeń jest nieustalone pole temperatury w powtarzalnym rozpatrywanym fragmencie górotworu oraz strumień ciepła przejmowanego od gruntu podczas sezonu grzewczego.
EN
In the paper there are given the results of analysis of heat transfer processes in the region of heat pump vertical ground heat exchanger. Unsteady temperature field in the analysed repetitive part of the ground and heat fluxes being transferred from the ground during all heating season are the results of calculations.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.