The article presents the results of research in the area of using deep neural networks to identify moisture inside the walls of buildings using electrical impedance tomography. Two deep neural networks were used to transform the input measurements into images of damp places - convolutional neural networks (CNN) and recurrent long short-term memory networks LSTM. After training both models, a comparative assessment of the results obtained thanks to them was made. The conclusions show that both models are highly utilitarian in the analyzed problem. However, slightly better results were obtained with the LSTM method.
PL
W artykule przedstawiono rezultaty badań w obszarze wykorzystania głębokich sieci neuronowych do identyfikacji zawilgoceń wewnątrz ścian budynków przy użyciu elektrycznej tomografii impedancyjnej. Do przekształcenia pomiarów wejściowych na obrazy przedstawiające zawilgocone miejsca użyto dwóch rodzajów głębokich sieci neuronowych – konwolucyjne sieci neuronowe (CNN) i rekurencyjne sieci typu LSTM. Po wytrenowaniu obu modeli dokonano oceny porównawczej uzyskanych dzięki nim rezultatów. Wnioski wskazują na dużą utylitarność obu modeli w badanej problematyce, jednak nieco lepsze rezultaty uzyskano dzięki metodzie LSTM.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.