Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 5

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  wykresy krzyżowe
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
PL
Celem artykułu jest opracowanie metodyki pozwalającej na wyodrębnienie stref/obiektów geologicznych o korzystniejszych własnościach petrofizycznych na podstawie analizy danych sejsmicznych i otworowych. Do badań tych wykorzystano zdjęcie sejsmiczne 3D z obszaru środkowej części przedgórza Karpat, a szczegółowe analizy prowadzono w obrębie stropowej partii kompleksu węglanowego górnej jury i dolnej kredy. W artykule przedstawiono wyniki analiz przeprowadzonych w obrębie centralnej części wspomnianego wyżej zdjęcia sejsmicznego. Wyodrębnienie obiektów przestrzennych do potencjalnej sekwestracji CO2 było realizowane na podstawie atrybutów sejsmicznych obliczonych z inwersji symultanicznej. Inwersja sejsmiczna jest cennym narzędziem umożliwiającym estymację parametrów fizycznych ośrodka geologicznego z danych sejsmicznych, gdyż pozwala ona na przekształcenie amplitudy refleksów sejsmicznych w fizyczne parametry skał, a w konsekwencji w ilościowy opis złoża. Prędkość propagacji fal sejsmicznych jest jednym z podstawowych parametrów, który najbardziej wiarygodnie charakteryzuje właściwości fizyczne ośrodka geologicznego. Wykonane zostały wykresy krzyżowe atrybutów impedancji fali podłużnej względem Lambda-Rho (Zp – λρ) oraz Lambda-Rho względem Mu-Rho (λρ – µρ), które w najlepszym stopniu odzwierciedlały zależności pomiędzy parametrami sprężystymi i elastycznymi. W obliczeniach wykorzystano opcję horizon probe dostępną w module Geobody Interpretation oprogramowania Petrel. Obliczenia prowadzono dla bramki czasowej obejmującej interwał od wyinterpretowanego horyzontu sejsmicznego odpowiadającego stropowi jury górnej wraz z dolną kredą (J3+K1str) do wartości czasu 120 ms poniżej tego horyzontu. Opracowana metodyka może znaleźć w przyszłości zastosowanie zarówno do rozpoznawania stref o korzystniejszych parametrach zbiornikowych, jak również do bardziej zaawansowanych procesów budowy modeli statycznych i dynamicznych analizowanych formacji skalnych. Wyznaczone obiekty po przeprowadzeniu niezbędnych analiz oraz modelowań mogą zostać wykorzystane do potencjalnego składowania CO2.
EN
The aim of this paper is to develop a methodology to identify geological zones/objects with more favorable petrophysical properties based on analysis of seismic and well data. For these studies 3D seismic image from the middle part of the Carpathian Foreland was used, and detailed analyses were carried out within the top part of the Upper Jurassic and Lower Cretaceous carbonate complex. This paper presents results of performed analysis in the central part of the above-mentioned seismic image. Identification of spatial objects for potential CO2 sequestration was realized on the basis of seismic attributes calculated from simultaneous inversion. Seismic inversion is a useful tool for the estimation of reservoir properties from seismic data, as it enables the transformation of amplitude of seismic reflections into physical parameters of rocks and, consequently, into a quantitative description of the reservoir. Propagation of velocity seismic waves is one of the basic parameters that most reliably characterizes the physical properties of a geological medium. Cross plots of longitudinal wave impedance attributes versus Lambda-Rho (Zp – λρ) and Lambda-Rho versus Mu-Rho (λρ – µρ) were made, which best represented the relationships of the elastic parameters. The horizon probe option available in Geobody Interpretation module of Petrel software was used to perform calculations. A time gate covering the interval from the interpreted seismic horizon corresponding to the Upper Jurassic – Lower Cretaceous top (J3+K1str) to the time value of 120 ms below this horizon was adopted. The developed methodology can be applied in the future both for identification of the zones of better reservoir parameters as well as for more advanced processes of static and dynamic models building for the analyzed rock formations. After conducting necessary analyses and modeling the identified objects can be used for potential CO2 storage.
PL
Celem artykułu było wyodrębnienie stref o korzystniejszych parametrach zbiornikowych na podstawie analizy atrybutów sejsmicznych obliczanych z inwersji sejsmicznej w połączeniu z danymi otworowymi. Obliczenia przeprowadzono na wolumenie sejsmicznym ze zdjęcia 3D usytuowanego w środkowej części przedgórza Karpat. Przedmiotem badań była stropowa część kompleksu węglanowego górnej jury. Do identyfikacji stref o preferowanych parametrach wykorzystane zostały wykresy krzyżowe atrybutów impedancji fali podłużnej względem Lambda-Rho (Zp – λρ) oraz Lambda-Rho względem Mu-Rho (λρ – μρ). W obliczeniach wykorzystano opcję horizon probe dostępną w module Geobody Interpretation oprogramowania Petrel. Na podstawie otrzymanych wyników można stwierdzić, że najlepsze dopasowanie obrazu na przekrojach sejsmicznych z profilowaniem porowatości (PHI) w otworze G-4 uzyskano dla wariantu obliczeń Lambda-Rho vs. Mu-Rho, w którym w obrębie wyodrębnionych stref o lepszych parametrach zbiornikowych wydzielono trzy klasy zakresów wartości. Pozwoliło to również w lepszym stopniu zwizualizować zmienność analizowanych parametrów. Wyniki przeprowadzonych badań wskazują, że utwory węglanowe górnej jury w obszarze badań mają zróżnicowane parametry zbiornikowe, przy czym strefy o lepszych własnościach zlokalizowane są głównie w stropowej części tego kompleksu. Generalnie rejon o lepszym rozwoju własności zbiornikowych znajduje się na północny zachód od analizowanego otworu G-4. Można przypuszczać, że jest to związane z obecnością w tym rejonie regionalnych dyslokacji, wokół których doszło do rozwoju szczelinowatości. Najprawdopodobniej dodatkowym czynnikiem odpowiedzialnym za wzrost porowatości w tej strefie jest powierzchnia krasowa, rozwinięta bezpośrednio w stropie utworów jury. Prezentowana metodyka może znaleźć zastosowanie nie tylko do bezpośredniej identyfikacji poziomów skał zbiornikowych o preferowanych parametrach, ale może być też szeroko wykorzystywana w różnego typu analizach i modelowaniach przestrzennych.
EN
The aim of this paper was to distinguish zones with more preferred reservoir parameters based on the analysis of seismic attributes calculated from seismic inversion, combined with well data. The calculations were performed on 3D seismic volumes located in the central part of the Carpathian Foreland. The subject of the study was the upper part of the Upper Jurassic carbonate complex. Cross plots of longitudinal wave impedance attributes against Lambda-Rho (Zp – λρ) and Lambda-Rho against Mu-Rho (λρ – µρ) were used to identify zones with preferred parameters. The calculations used the horizon probe option available in the Geobody Interpretation module in Petrel software. Based on the results, it was concluded that the best match on seismic sections with porosity profiling (PHI) in G-4 well was obtained for the variant of Lambda-Rho vs. Mu-Rho calculations, in which three classes of value ranges were separated within the identified zones with preferable reservoir parameters. It allowed to better visualize the variability of the analyzed parameters. The results of the research indicate that the Upper Jurassic carbonate formations in the study area are characterized by varying reservoir parameters, with the zones with better properties located mainly in the top part of this complex. In general, the region with better development of reservoir properties is located to the northwest of the analyzed G-4 well. It can be assumed that this is due to the presence of regional dislocations in this area, around which fracturing has developed. Most likely, an additional factor responsible for the increase in porosity in this zone is the karst surface, developed directly in the uppermost part of the Jurassic formations. The presented methodology can find application not only for direct identification of reservoir intervals with preferred parameters, but can be widely used in various types of spatial analysis and geophysical modeling.
3
Content available remote Lithology identification technology using BP neural network based on XRF
EN
The element content obtained by X-ray fluorescence (XRF) mud-logging is mainly used to determine mineral content and identify lithology. This work has been developed to identify dolomite, granitic gneiss, granite, limestone, trachyte, and rhyolite from two wells in Nei Mongol of China using back propagation neural network (BPNN) model based on the element content of drill cuttings by XRF analysis. Neural network evaluation system was constructed for objective performance judgment based on Accuracy, Kappa, Recall and training speed, and BPNN for lithology identification was established and optimized by limiting the number of nodes in the hidden layer to a small range. Meanwhile, six basic elements that can be used for fuzzy identification were determined by cross plot and four sensitive elements were proposed based on the existing research, both of which were combined to establish sixteen test schemes. A large number of tests are performed to explore the best element combination, and the result of experiments indicate that the improved combination has obvious advantages in identification performance and training speed. The author’s pioneer work has contributed to the neural network evaluation system for lithology identification and the optimization of input elements based on BPNN.
PL
W pracy przeanalizowano wpływ obecności frakcji ilastej na rejestrowane w otworach wartości profilowań geofizyki otworowej. Wykorzystując koncepcję przedstawioną po raz pierwszy przez Thomasa & Stiebera (1975), przeprowadzono obliczenia "odpowiedzi" sond w założonym modelu piaskowcowo-ilastym o zróżnicowanych miąższościach. Porównano wyniki modelowań z rzeczywistymi krzywymi, zarejestrowanymi w otworze J4 w interwale występowania utworów miocenu autochtonicznego. Wykonane wykresy krzyżowe na podstawie pomiarów sondą neutronową i gamma, gęstościową i akustyczną potwierdzają możliwość określenia zarówno typu zailenia, jak i poprawnej porowatości oraz udziału frakcji piaskowcowej (tzw. net to gross) w warstwach złożowych. Wykres krzyżowy oparty na pomiarach gamma i oporności pozwala na rozdzielenie warstw nasyconych wodą i gazem.
EN
The analysis of effects of shale distribution and clay volume in reservoir formations on well logging curves is presented in this paper. A conception given originally by Thomas & Stieber (1975) was applied into modelling the response of well logging tools for an assumed shaly-sand model. Results of calculations were compared with logs registered in the J4 well which drilled the autochthonous Miocene deposits. Different crossplots obtained based on Gamma Ray and Neutron and Density or Acoustic logs prove that there is a possibility to determine porosity, shale distribution and sand volume (net to gross) in the reservoir horizons.
PL
W pracy zaprezentowano metodę interpretacji profilowań geofizyki otworowej przy wykorzystaniu korelacyjnych wykresów krzyżowych. Pozwalają one na ocenę składu litologicznego oraz zidentyfikowanie minerałów ilastych występujących w badanych skałach. Idea wykresów krzyżowych opiera się na różnym reagowaniu profilowań geofizycznych, zwłaszcza PN, PGG, PA, na litologię (skład mineralny), porowatość skały, nasycenie wodą czy węglowodorami (ropa, gaz)
EN
In the paper a construction of cross-plots as a method of interpretation in well logging is presented. The authors focused in cross-plots for lithology classification and for identification of clay minerals in investigated rocks. Detailed analysis of the results of spectral gamma ray is the base for distinguishing clay minerals between groups of illite, kaolinite, montmorillonite, micas and glauconite. Spectral litho-density log enables spectacular distinguishing between two minerals: calcite and dolomite, which have the photoelectric absorption index Pe quite different. The examples of interpretation basing on cross-plots constructed in Zechstein rocks and Carboniferous formation in Sudetic monocline are enclosed
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.