Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  współczynnik wnikania tlenu
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Purpose: To evaluate the capability of various kernels employed with support vector regression (SVR) and Gaussian process regression (GPR) techniques in estimating the volumetric oxygen transfer coefficient of plunging hollow jets. Design/methodology/approach: In this study, a data set of 81 observations is acquired from laboratory experiments of hollow jets plunging on the surface of water in the tank. The jet variables: jet velocity, jet thickness, jet length, and water depth are varied accordingly and the values of volumetric oxygen transfer coefficient is computed. An empirical relationship expressing the oxygenation performance of plunging hollow jet aerator in terms of jet variables is formulated using multiple nonlinear regression. The performance of this nonlinear relationship is compared with various kernel function based SVR and GPR models. Models developed with the training data set (51 observations) are checked on testing data set (24 observations) for performance comparison. Sensitivity analysis is carried out to examine the influence of jet variables in effecting the oxygen transfer capabilities of plunging hollow jet aerator. Findings: The overall comparison of kernels yielded good estimation performance of Radial Basis Function kernel (RBF) and Pearson VII Function kernel (PUK) using the SVR technique which is followed by nonlinear regression, and other kernel function based regression models. Research limitations/implications: The results of the study pertaining to the performance of kernels are based on the current experimental conditions and the estimation potential of the regression models may fluctuate beyond the selection of current data range due to datadependant learning of the soft computing models. Practical implications: Volumetric oxygen transfer coefficient of plunging hollow jets can be predicted precisely using SVR model by employing RBF as kernel function as compared to empirical correlation and other kernel function based regression models. Originality/value: The comparative analysis of kernel functions is conducted in this study. In previous studies, the predictive modelling approaches are implemented in simulating the aeration properties of cylindrical solid jets only, while this paper simulates the volumetric oxygen transfer coefficient of diverging hollow jets with the jet variables by utilizing polynomial, normalized polynomial, PUK, and RBF kernels in SVR and GPR.
EN
Experimental investigations of oxygen transfer in a pilot-plant scale rectangular air-lift column were carried out. Correlation equations describing these values have been proposed on the basis of a broad range of experimental data.
EN
Process of oxygen transfer in a laboratory rotating-disc bioreactor was investigated. A dependence of the method of liquid aeration, air flow rate, rotary speed of discs and the level of liquid (i.e. air exposed area of discs) on kia was determined. Experimental results were compared with literature data and used for Verification of the applicability of two models of oxygen transfer in rotating biological contactors.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.