Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 6

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  współczynnik szorstkości
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
PL
W pracy przedstawiono procedurę wyznaczania podstawowych parametrów wpływających na profil prędkości wiatru tj. współczynnika szorstkości i prędkości tarciowej w oparciu o dane uzyskane z analiz symulacyjnych. W celu uchwycenia wpływu zabudowy na zmianę parametrów kształtujących profil prędkości wiatru przeprowadzono symulację numeryczną w oparciu o turbulencyjny model realizable k - ɛ. Analizę przeprowadzono dla prostego przypadku obiektu w kształcie walca o wymiarach ɸ =10 m i h=10 m zlokalizowanego w terenie otwartym o szorstkości podłoża zo=0,02 m. Korzystając z uzyskanych danych określono średnie wielkości prędkości u i dyssypacji energii ɛ, na trzech analizowanych wysokościach (2, 12, 16 m), w odległości 0, 21, 42 i 63 m od wlotu. W pierwszym wariancie współczynnik szorstkości i prędkość tarciową wyznaczono korzystając z profilu logarytmicznego prędkości wiatru, przyjmując przemieszczenie płaszczyzny zerowej zd zgodnie ze wzorem zaproponowanym w pracy [1]. W drugim wariancie wielkości ux i zo określono przyjmując założenie, że wystąpił pomijalnie mały efekt turbulencji termicznej QH = 4,7 W/m2. Główną bazą rozważań były równania wynikające z podobieństwa Monina Obukhova i bezwymiarowej funkcji ɸ (e) ی. Wielkości uzyskane w ramach wariantu pierwszego są możliwe do zaakceptowania. Natomiast wyniki otrzymane w wariancie drugim w odległości do 40m od wlotu wielokrotnie przewyższają poziom realny.
EN
The paper presents the procedure of determining the basic parameters affecting the wind speed profile, i.e. roughness coefficient and friction velocity based on numerical simulation. In order to show the impact of development on changes in parameters influencing wind speed profile numerical simulation has been carried out based on realizable K-ɛ model. The analysis was conducted for the simple case of cylindrical object with dimensions ɸ=10 m and h=10 m located in the open area with the roughness coefficient zo=0,02m. Based on obtained numerical results the average values of wind speed and energy dissipation were determined at three heights (2, 12, 16 m) in a distance of 0, 21, 42 and 63 m from the inlet. In a first variant roughness coefficient and friction velocity were determined using the logarithmic wind speed profile, assuming zero plane displacement in accordance with [1]. In the second variant, the size of ux and zo was determined on the assumption that there was a negligible effect of thermal turbulence QH = 4,7W/m2. The consideration were based on equation resulting from Monin Obukhov similarity and dimensionless function ɸ (e) ی. Results obtained in the first variant are acceptable. In contrast, the results obtained in the second variant, at the distance of 40m from the inlet are several times higher than realistic level.
PL
Celem artykułu jest uzasadnienie potrzeby włączenia pomiarów miąższości osadu kanałowego do monitoringu sieci kanalizacyjnej oraz przedstawienie i przeanalizowanie problemów technicznych związanych z prowadzeniem pomiarów przepływu ścieków i miąższości osadu w przełazowych kolektorach. Na podstawie analizy dostępnej literatury przedstawiono również obecne możliwe kierunki poprawy monitoringu osadu w sieci kanalizacyjnej. Artykuł zawiera analizę wpływu błędu pomiarowego miąższości osadu na estymację pola powierzchni przekroju poprzecznego osadu i ścieków. Na podstawie pomiarów w kolektorze grawitacyjnym o średnicy 1800 mm oceniono wpływ miąższości osadu dennego w kolektorze na jego sprawność hydrauliczną.
EN
The main subject of this paper is justification of the need for including measurements of sewer sediment depth into monitoring of the sewer networks and demonstrate the technical problems with flow and sediment depths measurements in man entry sewers. The possible improvements of sediment monitoring in sewer network have also been shown on the basis of literature review. The paper covers the impact of an measurement error of sediment depth on the sediment and wastewater flow cross section area estimation. The assessment of the impact of bottom sediment on flow capacity of 1800 mm in diameter sewer pipe has been provided.
EN
The interceptor of urban wastewater should be treated as a collector and transporter of sewage. The roughness coefficient n is one of the basic parameters influencing the hydraulic conditions of open channels (gravitational flow). The value of n coefficient depends on channel material, carefulness of conjunctions execution and the amount of settled sediments. During the conducted experiments real roughness coefficients of four chosen sanitation conduits in Chelm, Poland were obtained. The choice was made because the different: age of pipes, materials, diameters, inclinations and mean sewage flow velocities. The calculations of n coefficient were based on the Manning formula. The gained results proved the hypothesis of real roughness coefficient increase during the long-lasting exploitation of sanitation channels. The analysis of gained results for selected sanitation pipes in Chelm showed the maximal 43.1 % gain of n coefficient compared with values presented in projecting guidelines. The presented research may be useful during creation and calibration of Chelm sanitation network numerical model. Application of real values of roughness coefficient during model calibration allows to obtain results of calculations more precisely describing the simulated phenomenon.
PL
Współczynnik szorstkości n jest jednym z podstawowych parametrów wpływających na warunki hydrauliczne przepływów ze swobodnym zwierciadłem. Wartooeć współczynnika szorstkooeci zależy od materiału, z którego zbudowany jest kanał, od rodzaju, starannooeci wykonania połączeń oraz od zgromadzonych na dnie i obrastających oeciany kanału osadów. Przeprowadzono badania współczynnika szorstkości n dla 4 wybranych przewodów kanalizacji sanitarnej w Chełmie. Wyboru dokonano ze względu na różny czas ich eksploatacji, rodzaj materiału, średnice i spadki kanału oraz prędkości przepływu ścieków. Obliczenia współczynnika szorstkości n przeprowadzono, wykorzystując przekształcony wzór Manninga. Uzyskane wyniki potwierdziły hipotezę, zakładającą wzrost wartości współczynnika n w czasie eksploatacji sieci. Analizując otrzymane wyniki i porównując je z założeniami projektowymi, stwierdzono, iż wyznaczony współczynnik szorstkości dla wybranych przewodów sieci kanalizacyjnej w Chełmie jest większy nawet o 43,1 % od wartości podanych w wytycznych do projektowania. Przeprowadzone badania mogą być pomocne przy budowie i kalibracji modelu hydraulicznego sieci kanalizacyjnej miasta Chełm. Zastosowanie rzeczywistych wartości współczynnika szorstkości w procesie kalibracji modelu numerycznego umożliwi uzyskanie wyników obliczeń symulacyjnych w lepszym stopniu odzwierciedlających procesy zachodzące w opisywanych obiektach.
PL
Współczynnik szorstkości n jest jednym z podstawowych parametrów wpływających na warunki hydrauliczne przepływów ze swobodnym zwierciadłem. Wartość współczynnika szorstkości zależy od materiału, z którego zbudowany jest kanał, od rodzaju, staranności wykonania połączeń oraz od zgromadzonych na dnie i obrastających ściany kanału osadów. Przeprowadzono badania współczynnika szorstkości n dla 4 wybranych przewodów kanalizacji sanitarnej w Chełmie. Wyboru dokonano ze względu na różny czas ich eksploatacji, rodzaj materiału, średnice i spadki kanału oraz prędkości przepływu ścieków. Obliczenia współczynnika szorstkości n przeprowadzono, wykorzystując przekształcony wzór Manninga. Uzyskane wyniki potwierdziły hipotezę, zakładającą wzrost wartości współczynnika n w czasie eksploatacji sieci. Analizując otrzymane wyniki i porównując je z założeniami projektowymi, stwierdzono, iż wyznaczony współczynnik szorstkości dla wybranych przewodów sieci kanalizacyjnej w Chełmie jest większy nawet o 43,1% od wartości podanych w wytycznych do projektowania. Przeprowadzone badania mogą być pomocne przy budowie i kalibracji modelu hydraulicznego sieci kanalizacyjnej Chełm. Zastosowanie rzeczywistych wartości współczynnika szorstkości w procesie kalibracji modelu numerycznego umożliwi uzyskanie wyników obliczeń symulacyjnych w lepszym stopniu odzwierciedlających procesy zachodzące w opisywanych obiektach.
EN
The interceptor of urban wastewater should be treated as a collector and transporter of sewage. Roughness coefficient n is one of the basic parameters influencing the hydraulic conditions of open channels (gravitational flow). The value of n coefficient depends on channel material, carefulness of conjunctions execution and the amount of settled sediments. During conducted experiments roughness coefficients of 4 chosen sanitation conduits in Chelm, Poland were obtained. The choice was made because the different: age of pipes, materials, diameters, inclinations and mean sewage flow velocities. The calculations of n coefficient were based on the Manning formula. The gained results proved the hypothesis of roughness coefficient increase during the longlastingexploitation of sanitation channels. The analysis of gained results for selected sanitation pipes in Chelm showed the 43.1% gain of n coefficient compared with values presented in projecting guidelines. The presented research may be useful during creation and calibration of Chelm sanitation network numerical model. Application of real values of roughness coefficient during model calibration allows to obtain results of calculations more precisely describing the simulated phenomenon.
EN
The slopes of canalised brooks and ditches, which are the drainage water receivers, including open channels of other purposes are usually overgrown by grass. The slopes of naturalised channels are seldom if ever mowed. Therefore, when performing hydraulic calculations (for an average discharge at vegetation time, a maximum discharge during summer floods), it must be presumed that these channels are overgrown with luxuriant grass of 50-70 cm height. Thus, by estimating channel conveyance, i.e., possibility to allow the vegetation to exist, it is necessary to take the grass influence into account. For this purpose, it was necessary to work out a hydraulic calculation method for such channels. In the Lithuanian Institute for Water Management, a hydraulic calculation model was developed for naturalised channels overgrown by trees and grasses (RIMKUS, 1996). To estimate the grass influence, the hydraulic research data published by DĄBKOWSKI and POPEK (1997) (Warsaw Agricultural University) were employed. To apply these data it was necessary to employ the method of equivalent hydraulic bottom.
PL
Wiele z rowów naturalnych cieków wodnych zarasta roślinnością trawiastą. Zmienia ona hydrauliczne właściwości koryt w tym także spadek hydrauliczny w korytach poddawanych zabiegom renaturalizacyjnym. Prowadząc obliczenia przepustowości takich koryt trzeba uwzględniać możliwość ich zarastania trawami o wysokości do 50-70 cm. Przyjęto, że praktyczniej jest w obliczeniach stosować współczynnik szorstkości i głębokości strumienia odnoszone do powierzchni pochylonych traw. Wykorzystując dane z doświadczeń DĄBROWSKIEGO i POPKA [1997] sporządzono dla trzech natężeń przepływu q zależności współczynnika szorstkości n1 od głębokości h1, odnoszących się do przekroju strumienia do dna koryta (tab. 1 i rys. 1). Z krzywych wyrównujących te zależności odczytano wyrównane wartości odpowiadających sobie n1 i h1. Przyjęto, że w analizowanym przypadku (gładkie szklane ściany boczne) promień hydrauliczny jest równy głębokości wody. W dalszych analizach wprowadzono pojęcie zastępczego dna koryta na poziomie wierzchołków przygiętych traw. Głębokość strumienia wody przy takim założeniu wynosi h = h1 - t, gdzie t jest grubością przygiętych traw. Stosując wzór Chezy'ego dla całego przekroju i dla przekroju zastępczego o głębokości h i odpowiadającego jej współczynnika szorstkości n uzyskano wyrażenie (4), a następnie ze wzoru (5) na grubość warstwy traw t. Ze wzoru (5) obliczono wartości t przy założeniach czterech wartości współczynnika szorstkości warstwy przygiętych traw n i zebrano je w tabelach 3-6. Zmianę współczynnika szorstkości n wyrażono wzorem (6), w którym hgr jest wysokością traw w analizowanych doświadczeniach. Do obliczeń grubości warstwy przygiętych traw t użyto wzoru (7). Współczynniki liczbowe a1-a5 występujące w tym wzorze obliczono na podstawie wyników wspomnianych doświadczeń dla dwóch przypadków, opisanych wzorami (9) i (11). Wysokość traw w doświadczeniach wynosiła 0,35 m.
6
Content available remote Zależność współczynnika szorstkości od kształtu koryta rzecznego
EN
The Chezy formula for steady flow in a uniform symmetric channel with constant slope-friction factor is mathematically examined. First of all a wide rectangular channel and a semicircular channel are compared in respect to mean flow velocity using the Chezy formula with Manning. Chezy and logarithmic law of velocity. Then the inverse Chezy problems, i.e., the determination of the channel shape above the initial level for both a given rating curve of depth-flow discharge and flow area-flow discharge, are posed and the differential-integral equations for their solution are derived. It is shown that in general there is a double solution of the both problems. One solution gives a widening shape with depth and it may be unlimited in water depth, while the other is always upper bounded and it presents a narrowing shape with depth. The condition for the upper bound of the both solutions is given. The solution of the first inverse problem is demonstrated for a rating curve in the form of the product of flow discharge of trapezoid shape above an initial level and an exponential function. It is shown that an exponential reduction of channel flow capacity changes a linear channel sides into convex sides making a cross-section shape wider while an exponential increase of flow - into concave sides, i.e. reducing a section width, which is against the common sense. .The solution of the second inverse problem is presented for a rating curve with the constant slope/mean velocity ratio (m) above an initial level. In particular, it is shown that a solution for a negative value of m exists, which is evidently against the common sense.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.