Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 159

Liczba wyników na stronie
first rewind previous Strona / 8 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  workplace air
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 8 next fast forward last
PL
1,4-Dioksan to lotna ciecz o słabym zapachu, która dobrze rozpuszcza się w wodzie i większości rozpuszczalników organicznych. Jako łatwopalna ciecz stwarza zagrożenie pożarowe. 1,4-Dioksan jest niestabilny w podwyższonej temperaturze i ciśnieniu i może tworzyć mieszaniny wybuchowe. Substancja jest stosowana głównie jako rozpuszczalnik w produkcji innych substancji chemicznych, jako rozpuszczalnik do farb drukarskich, powłok i klejów oraz jako odczynnik laboratoryjny. Zgodnie z rozporządzeniem Parlamentu Europejskiego i Rady (WE 1272/2008) 1,4-dioksan został sklasyfikowany jako substancja rakotwórcza, łatwopalna, drażniąca na oczy oraz drażniąca na układ oddechowy. W artykule przedstawiono metodę oznaczania 1,4-dioksanu w powietrzu na stanowiskach pracy, znowelizowaną ze względu na proponowaną zmianę wartości najwyższego dopuszczalnego stężenia (NDS) dla tej substancji. Metoda polega na adsorpcji 1,4-dioksanu na węglu aktywnym, desorpcji mieszaniną propan-2-olu i disiarczku węgla oraz analizie chromatograficznej (GC-FID) otrzymanego roztworu. Metoda umożliwia oznaczanie 1,4-dioksanu w zakresie stężeń 2,2 ÷ 44 mg/m3 (gdy NDS 22 mg/m3) lub 0,73 ÷ 14,6 mg/m3 (gdy NDS 7,3 mg/m3), tj. 1/10 ÷ 2 proponowanych wartości najwyższego dopuszczalnego stężenia. Metoda została poddana walidacji zgodnie z normą PN-EN 482. Zakres tematyczny artykułu obejmuje zagadnienia zdrowia oraz bezpieczeństwa i higieny środowiska pracy będące przedmiotem badań z zakresu nauk o zdrowiu oraz inżynierii środowiska.
EN
1,4-Dioxane is a volatile liquid with a weak odor that dissolves well in water and most organic solvents. As a flammable liquid it poses a fire hazard. 1,4-Dioxane is unstable at increased temperature and pressure and can form explosive mixtures. It is mainly used as a solvent in the production of other chemicals, as a solvent for printing inks, coatings and adhesives, and as a laboratory reagent. According to the Regulation of the European Parliament and the Council (WE 1272/2008), 1,4-dioxane is classified as a carcinogen, flammable, eye and respiratory irritant. This article presents a method for the determination of 1,4-dioxane in workplace air, revised due to a proposed change in the maximum allowable concentration (MAC) value for this substance. The method involves adsorption of 1,4-dioxane on activated carbon, desorption with a mixture of propan-2-ol and carbon disulfide, and chromatographic analysis (GC-FID) of the resulting solution. The method allows for the determination of 1,4-dioxane in the concentration range of 2.2 to 44 mg/m3 (MAC 22 mg/m3 ) or 0.73 to 14.6 mg/m3 (MAC 7.3 mg/m3 ), i.e. 1/10 to 2 of the proposed value of the maximum allowable concentration. The method has been validated in accordance with PN-EN 482. This article discusses the problems of occupational safety and health, which are covered by health sciences and environmental engineering.
2
Content available remote Oznaczanie antymonu i jego związków w powietrzu na stanowiskach pracy
PL
Antymon jest stosowany wraz z innymi metalami jako dodatek do stopów czcionkowych i łożyskowych. Antymon w formie metalicznej nie jest zaklasyfikowany jako substancja zagrażająca zdrowiu, natomiast jego sole zostały tak sklasyfikowane. Niektóre związki antymonu zostały sklasyfikowane jako substancje rakotwórcze. Obowiązująca wartość najwyższego dopuszczalnego stężenia (NDS) w powietrzu na stanowiskach pracy wynosi 0,5 mg/m3 (Rozporządzenie MRPiPS 2018). Celem badań było opracowanie metody oznaczania antymonu do oceny narażenia zawodowego w zakresie 1/10 ÷ 2 zaproponowanej wartości NDS. Metoda polega na pobraniu antymonu i jego związków zawartych w powietrzu na filtr MCE, mineralizacji filtra w wodzie królewskiej w temperaturze 150°C oraz oznaczeniu zawartości antymonu w próbce z zastosowaniem absorpcyjnej spektrometrii atomowej (AAS) z atomizacją w płomieniu. Metoda oznaczania antymonu została przedstawiona w postaci procedury analitycznej, którą zamieszczono w załączniku. Zakres tematyczny artykułu obejmuje zagadnienia zdrowia oraz bezpieczeństwa i higieny środowiska pracy będące przedmiotem badań z zakresu nauk o zdrowiu i inżynierii środowiska.
EN
Antimony is used as an additive in font and bearing alloys along with other metals. Antimony in metallic form is not classified as a health hazard, while its salts have been so classified. Some antimony compounds have been classified as carcinogens. The applicable value of the maximum allowable concentration (MAC) in air at workplaces is 0.5 mg/m3 (MRPiPS ordinance, 2018). The purpose of this study was to develop a method for the determination of antimony for occupational exposure assessment in the range of 1/10–2 of the proposed MAC values. The method consists of collecting antimony and its airborne compounds from an MCE filter, mineralizing the filter in aqua regia at 150°C, then determining the antimony content in the sample using atomic absorption spectrometry (AAS) with flame atomization. The method for the determination of antimony is presented in the form of an analytical procedure, which is included in the appendix. The scope of the article includes health and environmental health and safety issues that are the subject of research in health sciences and environmental engineering.
PL
1,2-Dihydroksybenzen (DHB) to bezbarwna substancja krystaliczna o charakterystycznym zapachu, która zmienia kolor na brązowy pod wpływem powietrza i światła. 1,2-Dihydroksybenzen stosuje się w przemyśle jako przeciwutleniacz. Narażenie pracowników na 1,2-dihydroksybenzen może wystąpić podczas jego produkcji, przetwarzania i stosowania substancji chemicznej, przy czym główne drogi narażenia pracowników na substancję to inhalacyjna, dermalna i przez układ pokarmowy. Celem badań było opracowanie metody oznaczania 1,2-dihydroksybenzenu do oceny narażenia zawodowego w zakresie 1/10 ÷ 2 zaproponowanej wartości NDS (10 mg/m3). Metoda polega na pobraniu obecnego w powietrzu 1,2-dihydroksybenzenu przez układ złożony z filtra włókna szklanego i rurki pochłaniającej zawierającej dwie warstwy sorbentu XAD-7, ekstrakcji roztworem N,N-dimetyloformamidu w metanolu oraz analizie chromatograficznej otrzymanego roztworu. Metoda umożliwia oznaczanie 1,2-dihydroksybenzenu w powietrzu w zakresie stężeń 1,0 ÷ 20,0 mg/m3. Metoda została poddana walidacji zgodnie z normą PN-EN 482. Zakres tematyczny artykułu obejmuje zagadnienia zdrowia oraz bezpieczeństwa i higieny środowiska pracy będące przedmiotem badań z zakresu nauk o zdrowiu oraz inżynierii środowiska.
EN
1,2-Dihydroxybenzene is a colorless crystalline substance with a characteristic odor that turns brown when exposed to air and light. It is used in industry as an antioxidant. Worker exposure to 1,2-dihydroxybenzene can occur during the production, processing and use of the chemical, through inhalation, dermal and gastrointestinal routes. The aim of the study was to develop a method for the determination of 1,2-dihydroxybenzene to assess occupational exposure within 1/10-2 of the proposed MAC value (10 mg/m3 ). The method involves the collection of 1,2-dihydroxybenzene in a system consisting of a glass fiber filter and a tube containing two layers of XAD-7 sorbent, extraction with a solution of N,N-dimethylformamide in methanol, and chromatographic analysis of the resulting solution. The method allows the determination of 1,2-dihydroxybenzene in air in the concentration range from 1.0 to 20.0 mg/m3. The method has been validated in accordance with PN-EN 482. The scope of the article includes health and environmental health and safety issues being the subject of research in health sciences and environmental engineering.
EN
Employers of the companies where carcinogenic chemicals are being processed or used are obliged to ensure safe working conditions for their employees. Butan-2-one oxime, commonly present in alkyd paints or silicone sealants may pose such a risk due to its reclassification as a category 1B carcinogen. Therefore, in Poland new maximum admissible concentrations (MAC) value of 1 mg/m3 was proposed by interdepartmental Commission for maximum admissible concentrations and intensities for agents harmful to health in the working environment. Assessing exposure to this compound requires a method to be developed for its determination in the workers’ breathing zone, which was the aim of the presented study. A method was developed for determining the aerosol concentrations of 2-butanone oxime in the air at workplaces, in the range of 1/10 to 2 of the MAC value, i.e. from 0.1 mg/m3 to 2 mg/m3. The method involves trapping the airborne aerosol of 2-butanone oxime onto a sampler - a glass tube with silica gel, its extraction with methanol and analysis of the resulting solution using gas chromatography with flame ionization detector in the presence of co-substances. Validation parameters were determined according to the guidelines of EN 482. The limit of detection at 6.79 ng/ml and the relative total uncertainty of 11.19% was determined. The method can be used by environmental occupational hygiene laboratories to measure concentrations of butan-2-one oxime in the air.
PL
W Polsce dotychczas nie było konieczności oznaczania stężenia węgla elementarnego (EC) w celu oceny narażenia inhalacyjnego pracowników, ponieważ polska wartość NDS jest ustalona dla frakcji respirabilnej spalin silników Diesla. Nie ma również żadnych danych dotyczących poziomu stężeń EC w powietrzu stanowisk pracy, a narażenie na ten niebezpieczny dla zdrowia czynnik dotyczy bardzo dużej populacji pracowników zatrudnionych m.in. w podziemnych wyrobiskach górniczych, jak również strażaków, kierowców tirów, autobusów, a także pracowników stacji obsługi samochodów (Szymańska i in. 2019). Wprowadzenie do Dyrektywy Parlamentu Europejskiego i Rady (UE) 2019/130 z dnia 16 stycznia 2019 r. wartości BOELV 0,05 mg/m³ dla spalin silników wysokoprężnych Diesla w środowisku pracy, mierzonych jako węgiel elementarny, wymaga dostosowania przepisów krajowych do tej wartości i opracowania metody oznaczania węgla elementarnego. Celem prac badawczych było opracowanie metody oznaczania węgla elementarnego w powietrzu na stanowiskach pracy na poziomie 0,005 mg/m³ . W wyniku badań opracowano metodę oznaczania węgla elementarnego w powietrzu na stanowiskach pracy z zastosowaniem termo-optycznego analizatora z detektorem płomieniowo-jonizacyjnym. Metoda polega na przepuszczeniu badanego powietrza zawierającego spaliny silnika Diesla przez filtr kwarcowy umieszczony w kasecie i analizie w odpowiednim programie temperaturowym. Uzyskano oznaczalność EC 0,0041 mg/m³ . Całkowita precyzja badania wynosiła 5,3%, względna niepewność całkowita 11,6%, a niepewność rozszerzona 23,2%. Zakres tematyczny artykułu obejmuje zagadnienia zdrowia oraz bezpieczeństwa i higieny środowiska pracy będące przedmiotem badań z zakresu nauk o zdrowiu oraz inżynierii środowiska.
EN
In Poland, until now it has not been necessary to determine the elemental carbon (EC) concentrations because Polish NDS values are set for a respirable fraction of diesel exhausts. No data on the level of EC concentrations in workplace air are available although the exposure to this hazardous factor concerns a large population of workers. The exposure concerns people working in underground mines and tunneling, firefighters, lorry and bus drivers, and car service station workers. The introduction of 0.05 mg/m³ BOELV value for diesel exhaust gases in working environment, measured as elemental carbon into the Directive 2019/130 of the European Parliament, requires the adjustment of the national legislation. The aim of the study was to develop a method for determining EC in workplace air at the level of 0.005 mg/m³ . As a result, a method for determination EC in workplace air using a thermo-optical analyzer with a flame ionization detector was developed. The method consists in passing the tested air containing diesel exhaust gases through a quartz filter placed in a cassette and its analysis in an appropriate temperature program. An EC determination of 0.0041 mg/m³ was obtained. The total accuracy of the method was 5.3%, a relative total uncertainty was 11.6% and an expanded uncertainty was 23.2%. This article discusses problems of occupational safety and health, which are covered by health sciences and environmental engineering.
PL
Izopren to wysoce lotna ciecz o nieprzyjemnym i drażniącym zapachu, która w powietrzu łatwo ulega polimeryzacji z wydzieleniem energii. Izopren jest stosowany w przemyśle głównie do produkcji opon, dętek, węży ogrodowych, uszczelek oraz odzieży. Pozyskuje się go przemysłowo jako produkt uboczny krakingu termicznego benzyny i ropy lub jako produkt uboczny produkcji etylenu. Jest wytwarzany przez rośliny, w których jest wykorzystywany podczas produkcji terpenoidów, karotenoidów oraz barwników. Zgodnie z rozporządzeniem Parlamentu Europejskiego i Rady (WE 1272/2008) izopren został sklasyfikowany jako substancja rakotwórcza, mutagenna oraz skrajnie łatwopalna. Celem badań było opracowanie metody oznaczania izoprenu do oceny narażenia zawodowego w zakresie 1/10 ÷ 2 zaproponowanej wartości NDS. Metoda polega na pobraniu izoprenu zawartego w powietrzu na rurkę wypełnioną sorbentem ORBO 351, desorpcji disiarczkiem węgla, a następnie oznaczeniu zawartości izoprenu w próbce z zastosowaniem chromatografii gazowej z detektorem płomieniowo-jonizacyjnym (GC-FID). Podczas wykonywania badań spełniono wymagania walidacyjne przedstawione w normie europejskiej PN-EN 482. Metoda umożliwia oznaczanie w powietrzu izoprenu o stężeniach 0,8 ÷ 16 mg/m³ . Zakres tematyczny artykułu obejmuje zagadnienia zdrowia oraz bezpieczeństwa i higieny środowiska pracy będące przedmiotem badań z zakresu nauk o zdrowiu i inżynierii środowiska.
EN
Isoprene is a highly volatile liquid with an unpleasant and irritating odor, which is easily polymerized in the air with the release of energy. Isoprene is used in industry mainly for the production of tires, inner tubes, garden hoses, gaskets and clothing. It is extracted industrially as a byproduct of the thermal cracking of gasoline and oil, or as a byproduct of ethylene production. It can also be produced during condensation of isobutene with formaldehyde or by catalytic dehydrogenation of isopentane. It is made by plants, where it is used during the production of tarpenoids, carotenoids and dyes. According to the Regulation of the European Parliament and of the Council (WE 1272/2008), isoprene has been classified as a carcinogen, mutagen and extremely flammable substance. The aim of the study was to develop a method for determining isoprene to assess occupational exposure within 1/10−2 of the proposed MAC value. The method involves collecting airborne isoprene onto a tube filled with ORBO 351 sorbent, desorbing it in carbon disulfide, and then determining the isoprene content of the sample using gas chromatography with a flame ionization detector (GC-FID). Validation requirements presented in European standard PN-EN 482 were fulfilled during the tests. The method enables determination of isoprene in air at concentrations of 0,8−16 mg/m³ . The method for determining isoprene has been recorded in the form of an analytical procedure (see Appendix). This article discusses the problems of occupational safety and health, which are covered by health sciences and environmental engineering.
PL
Masa poreakcyjna 5-chloro-2-metylo-2H-izotiazol-3-onu i 2-metylo-2H-izotiazol-3-onu (3: 1), określana jako CIT/MIT, w temperaturze pokojowej jest jasnożółtym ciałem stałym o strukturze krystalicznej. CIT/MIT bardzo dobrze rozpuszcza się w wodzie (>3 kg/l), natomiast słabiej w takich rozpuszczalnikach organicznych, jak: metanol, octan etylu czy toluen. CIT/MIT jest powszechnie stosowany jako środek biobójczy w produktach konsumenckich. Występuje zarówno w kosmetykach, jak i środkach czyszczących, a także produktach detergentowych (np. w farbach). Szkodliwe działanie mieszaniny CIT/MIT manifestuje się podrażnieniem skóry oraz błon śluzowych oczu. Substancja ta może również działać uczulająco zwłaszcza w stężeniach wyższych niż 0,0015%. Celem prac badawczych było opracowanie i walidacja metody oznaczania mieszaniny CIT/MIT w środowisku pracy. Opracowana metoda oznaczania mieszaniny CIT/MIT polega na pochłanianiu par lub aerozolu na płuczki z wodą destylowaną i oznaczeniu składników mieszaniny techniką wysokosprawnej chromatografii cieczowej z detekcją spektrofotometryczną (HPLC-UV-VIS). Opracowana metoda jest liniowa w zakresie stężeń 0,2 ÷ 4 μg/ml, co odpowiada zakresowi 0,02 ÷ 0,4 mg/m3 dla próbki powietrza o objętości 100 l. Sporządzona metoda analityczna umożliwia oznaczanie mieszaniny CIT/MIT w powietrzu na stanowiskach pracy w obecności innych związków z grupy izotiazolanów. Metoda charakteryzuje się dobrą precyzją i dokładnością, spełnia wymagania normy PN-EN 482 dla procedur dotyczących oznaczania czynników chemicznych. Opracowana metoda oznaczania mieszaniny CIT/MIT w powietrzu na stanowiskach pracy została zapisana w postaci procedury analitycznej, którą zamieszczono w załączniku. Zakres tematyczny artykułu obejmuje zagadnienia dotyczące zdrowia oraz bezpieczeństwa i higieny środowiska pracy, będące przedmiotem badań z zakresu nauk o zdrowiu oraz inżynierii środowiska.
EN
Post reaction mixture of 5-chloro-2-methyl-2H-isothiazol-3-one and 2-methyl-2H-isothiazol-3-one (3: 1) named as CIT/MIT in room temperature is a light yellow crystalline solid. CIT/MIT is highly soluble in water (>3 kg/l) and slightly soluble in such organic solvents, as methanol, ethyl acetate or toluene. CIT/MIT is used as biocide in consumer products like cosmetics, cleaning fluids or paints. CIT/MIT may cause side effects such as skin or eye irritation. It may also cause skin sensitization especially in concentrations higher than 0.0015%. The aim of the work was to develop and validate a method of determination of CIT/MIT in workplace air. The method is based on collection of the vapors or aerosol of these substances in water filed impingers, and analysis of the resulted solution by means of HPLC-UV-VIS technique. The developed method is linear in the concentration range of 0.2–4 µg/ml, which corresponds to the range of 0.02–0.4 mg/m3 for a 100-L air sample. The analytical method described in this paper enables determination of CIT/MIT mixture in air at workplaces in the presence of other isothiazolones. The method is precise, accurate and it meets the criteria for procedure for determination of chemical agents listed in Standard No. PN-EN 482. Developed method of determination of CIT/MIT at workplaces has been recorded as an analytical procedure (see Appendix). This article discusses the problems of occupational safety and health, which are covered by health sciences and environmental engineering.
8
PL
2,6-Di-tert-butylo-4-metylofenol (BHT) to organiczny związek należący do grupy fenoli. Substancja jest bezwonnym, białym lub żółtawobiałym, krystalicznym proszkiem. Jest przeciwutleniaczem stosowanym m.in. podczas produkcji żywności, pasz dla zwierząt, olejów zwierzęcych i roślinnych, farb, mydeł, produktów naftowych, kauczuków syntetycznych oraz tworzyw sztucznych. Narażenie pracowników na BHT może wystąpić podczas produkcji, przetwarzania i stosowania substancji chemicznej. W 2021 r. Zespół Ekspertów ds. Czynników Chemicznych Międzyresortowej Komisji ds. NDS i NDN zaproponował przyjęcie dla BHT wartości NDS na poziomie 10 mg/m3. Celem badań było opracowanie metody oznaczania BHT w powietrzu na stanowiskach pracy do oceny narażenia zawodowego w zakresie 1/10 ÷ 2 zaproponowanej wartości NDS. Metoda polega na: zatrzymaniu 2,6-di-tert-butylo-4-metylofenolu obecnego w badanym powietrzu na filtrze z włókna szklanego i sorbencie XAD-7, wymyciu zatrzymanej substancji roztworem N,N-dimetyloformamidu w metanolu i analizie tak uzyskanego roztworu z zastosowaniem chromatografii gazowej z detekcją płomieniowo-jonizacyjną. Najmniejsze stężenie BHT, jakie można oznaczyć w warunkach pobierania próbek powietrza i wykonania oznaczania, wynosi 0,96 mg/m3 (dla próbki powietrza o objętości 60 litrów). Metoda oznaczania BHT została przedstawiona w postaci procedury analitycznej, którą zamieszczono w załączniku. Zakres tematyczny artykułu obejmuje zagadnienia zdrowia oraz bezpieczeństwa i higieny środowiska pracy będące przedmiotem badań z zakresu nauk o zdrowiu oraz inżynierii środowiska.
EN
2,6-Di-tert-butyl-4-methylphenol (BHT) is an organic compound belonging to the phenol group and is an odorless, white or yellowish-white crystalline powder. BHT is an antioxidant used in the production of food, animal feed, animal and vegetable oils, paints, petroleum product soaps, synthetic rubbers and plastics, among others. Worker exposure to BHT can occur during the production, processing and use of the chemical. In 2021 the Group of Experts for Chemical Agents of the Interdepartmental Commission for MAC and MAI proposed MAC value of 10 mg/m3 for BHT. The aim of this study was to develop a method for determining BHT in workplace air for occupational exposure assessment within 1/10 ÷ 2 of the proposed MAC value. The method is based on retaining the BHT present in the air on a glass fiber filter and XAD-7 sorbent, leaching the retained substance with a solution of N,N-dimethylformamide in methanol and analyzing the solution by the use of gas chromatography with flame-ionization detection. The smallest concentration of BHT that can be determined under the conditions of air sampling and performing the determination is 0.96 mg/m3 (for an air sample of 60 liters). The method for the determination of BHT is presented in the form of an analytical procedure, which is included in the appendix. This article discusses the problems of occupational safety and health, which are covered by health sciences and environmental engineering.
PL
Kobalt ze względu na swoje fizykochemiczne właściwości w formie metalicznej jest wykorzystywany przy produkcji stopów odpornych na temperaturę, będących magnesami trwałymi i odlewniczych. Dodatkowo szerokie zastosowanie znajdują sole kobaltu, które są stosowane przy produkcji pigmentów, sykatyw do farb olejnych oraz baterii. Kobalt metaliczny w formie drobnego proszku w kontakcie ze skórą może wywoływać odpowiedź alergiczną. Głównym zagrożeniem dla zdrowia pracownika są rozpuszczalne sole kobaltu, które zgodnie z rozporządzeniem Parlamentu Europejskiego i Rady (WE 1272/2008) są sklasyfikowane jako substancje rakotwórcze. Celem badań było opracowanie metody oznaczania kobaltu do oceny narażenia zawodowego w zakresie 1/10 ÷ 2 zaproponowanej wartości NDS. Metoda polega na pobraniu aerozolu kobaltu i jego związków zawartych w powietrzu na filtr, mineralizacji filtra w kwasie azotowym(V) i kwasie chlorowodorowym w podwyższonej temperaturze, a następnie oznaczeniu zawartości kobaltu w próbce z zastosowaniem absorpcyjnej spektrometrii atomowej z elektrotermiczną atomizacją (ET-AAS). Podczas wykonywania badań spełniono wymagania walidacyjne przedstawione w normie europejskiej PN-EN 482. Metoda umożliwia oznaczanie kobaltu i jego związków w powietrzu w stężeniach 0,0001 ÷ 0,002 mg/m³ dla frakcji respirabilnej. Zakres tematyczny artykułu obejmuje zagadnienia zdrowia oraz bezpieczeństwa i higieny środowiska pracy będące przedmiotem badań z zakresu nauk o zdrowiu i inżynierii środowiska.
EN
Due to its physicochemical properties, cobalt in metallic form is used in the production of the following alloys: heat resistant, permanent magnets and foundry alloys. Moreover, cobalt salts are widely used in the production of pigments, oil drying agents and batteries. Metallic cobalt in the form of fine powder in contact with skin can cause an allergic response. However, the main danger are soluble cobalt salts, which are classified as carcinogens according to the European Union Commission Regulation (WE 1272/2008). The aim of this study was to develop a method for determining cobalt to assess occupational exposure within 1/10 ÷ 2 of the proposed MAC value. The method consists in taking an aerosol of cobalt and its compounds contained in the air onto a filter, mineralization of the filter in nitric acid (V) and hydrochloric acid at elevated temperature and then determination of cobalt content in the sample using atomic absorption spectrometry with electrothermal atomization (ET-AAS). Validation requirements presented in Standard No. PN-EN 482 were fulfilled during the tests. The method allow the determination of cobalt and its compounds in workplace air at concentrations of 0.0001 ÷ 0.002 mg/m³ for the respirable fraction. LOQ is 0.017 µg/m³ . The overall precision of the study was 5.39% and the expanded uncertainty was 23.56%. The method for determining cobalt and its compounds has been recorded in the form of an analytical procedure (see Appendix). This article discusses the problems of occupational safety and health, which are covered by health sciences and environmental engineering.
PL
Kadm i jego związki nieorganiczne powodują raka płuc. Wykazano także zależność między narażeniem ludzi na kadm i jego związki a rakiem nerek i prostaty. Szacuje się, że na kadm i jego związki jest narażonych kilka tysięcy osób zatrudnionych w hutnictwie, przy produkcji akumulatorów, stopów, pigmentów, tworzyw sztucznych oraz przy spawaniu. W Polsce wartość najwyższego dopuszczalnego stężenia (NDS) dla kadmu (CAS: 7440-43-9) i jego związków nieorganicznych została zmieniona. Wartość NDS mająca obowiązywać od 2027 roku odnosi się do frakcji wdychalnej i wynosi 0,001 mg/m³ . W okresie przejściowym od lipca 2021 do 2027 roku przyjęto wartość NDS wynoszącą 0,004 mg/m³ . Opracowano metodę oznaczania kadmu i jego nieorganicznych związków umożliwiającą oznaczanie tej substancji w powietrzu na stanowiskach pracy z wykorzystaniem metody absorpcyjnej spektrometrii atomowej z elektrotermiczną atomizacją (ET-AAS), zgodną z wymaganiami zawartymi w normie europejskiej PN-EN 482. Kadm oznaczano w zakresie stężeń: 0,10 ÷ 1,00 i 0,50 ÷ 5,00 µg/l. Uzyskano oznaczalność metody w powietrzu na stanowiskach pracy wynoszącą 0,0001 mg/m³ oraz możliwość oznaczania tej substancji w zakresie stężeń 0,00010 ÷ 0,0104 mg/m³ dla próbki powietrza 480 l. Przedstawiona metoda umożliwia oznaczanie kadmu i jego związków nieorganicznych w powietrzu na stanowiskach pracy w wymaganym zakresie 0,1 ÷ 2 nowych wartości NDS. Zakres tematyczny artykułu obejmuje zagadnienia zdrowia oraz bezpieczeństwa i higieny środowiska pracy będące przedmiotem badań z zakresu nauk o zdrowiu oraz inżynierii środowiska.
EN
Cadmium and its inorganic compounds cause lung cancer. A relationship between human exposure to cadmium and its inorganic compounds and renal and prostate cancer has also been demonstrated. It is estimated that several thousand people employed in metal production are exposed to cadmium and its inorganic compounds; in metallurgy, in the production batteries, alloys, pigments, plastics and welders. The values of the maximum allowable concentration (NDS) for cadmium [7440-43-9] and its inorganic compounds in Poland were changed. The NDS value, which is meant to become obligatory from 2027, refers to the inhalable fraction and amounts to 0.001 mg/m³ . In the transition period from July 2021 to 2027, the NDS value was set at 0.004 mg/m³ . A method for the determination of cadmium and its inorganic compounds was developed, enabling the determination of this substance in the air at workplaces with the use of the atomic absorption spectrometry with electrothermal atomization (ET AAS), in accordance with the requirements of the European standard PN-EN 482. Cadmium was determined in the concentration range: 0.10–1.00 µg/l and 0.50–5.00 µg/l. The method’s determination in the air at workplaces of 0.0001 mg/m³ was obtained for, as well as the possibility of determining this substance in the concentration range of 0.00010–0.0104 mg/m³ for a 480-l air sample. The presented method enables the determination of this substance in the air at workplaces in the required range of 0.1–2 new NDS values. This article discusses the problems of occupational safety and health, which are covered by health sciences and environmental engineering.
11
Content available remote Narażenie spawaczy na czynniki chemiczne emitowane do powietrza w miejscu pracy
PL
Przedstawiono charakterystykę i zagrożenia związane z pracą na stanowisku spawacza. Omówiono wybrane zagadnienia związane z emisją dymów spawalniczych. Przedstawiono wyniki przeglądu literatury dotyczącej narażenia spawaczy na metale emitowane na stanowisku pracy.
EN
A review, with 68 refs., of hazardous factors such as fumes, gases, high temp., noise and optical radiation that occur during welding. The exposure of welders to metals and nanoparticles emitted into the workplace air as well as methods of monitoring welding contaminants in air samples and biol. matrices in order to assess the hazards associated with their inhalation were presented.
PL
Celem prac badawczych było opracowanie i walidacja metody oznaczania frakcji wdychalnej i respirabilnej związków manganu, niklu i żelaza w powietrzu na stanowiskach pracy. Metoda polega na pobraniu z powietrza na umieszczone w odpowiednim próbniku filtry z estrów celulozy frakcji wdychalnej i respirabilnej badanych związków. Filtry mineralizuje się w stężonym kwasie azotowym(V) i sporządza roztwór do analizy w rozcieńczonym kwasie azotowym(V). Zastosowanie różnej krotności rozcieńczania roztworu próbki po mineralizacji umożliwia wykorzystanie wyznaczonych zakresów krzywych wzorcowych przy oznaczaniu substancji jako mangan, nikiel i żelazo. Dodatek soli lantanu (buforu korygującego) zapobiega występowaniu interferencji chemicznych, użycie lampy deuterowej eliminuje interferencje tła. Opracowana metoda umożliwia oznaczanie wybranych substancji w powietrzu środowiska pracy w zakresach stężeń odpowiadających zakresowi 0,1 ÷ 2 obecnie obowiązujących wartości NDS i umożliwia również oznaczanie niklu i jego związków we frakcji wdychalnej dla obecnie proponowanej, nowej wartości najwyższego dopuszczalnego stężenia. Opracowana metoda została poddana walidacji zgodnie z wymaganiami zawartymi w normie PN-EN 482 i uzyskano dobre wyniki walidacyjne. Metoda może być wykorzystana do oceny narażenia zawodowego na związki niklu, manganu i żelaza w powietrzu na stanowiskach pracy. Opracowana metoda oznaczania związków manganu, niklu i żelaza została zapisana w postaci procedury analitycznej, którą zamieszczono w załączniku. Zakres tematyczny artykułu obejmuje zagadnienia zdrowia oraz bezpieczeństwa i higieny środowiska pracy będące przedmiotem badań z zakresu nauk o zdrowiu oraz inżynierii środowiska.
EN
The aim of this study was to develop and validate a method for determining of inhalable and respirable fraction of compounds of manganese, nickel and iron in workplace air. The method is based on passing the tested air through a filter from the cellulose ester mixture placed in a specific sampler. The filter mineralizes in concentrated nitric acid (V) and makes a solution for analysis in diluted nitric acid (V). The use of different dilutions of the sample solution after mineralization makes it possible to use the ranges of standard curves for the determination of substances as manganese, nickel and iron. The addition of lanthanum salt (correction buffer) prevents the occurrence of chemical interference, the use of deuterium lamp eliminates background interference. The developed method enables the determination of selected substances in the air of the working environment in the concentration ranges corresponding to the range from 0.1 to 2 MACs values and also enables the determination of nickel and its compounds in the inhalable fraction for the currently proposed new value of the maximum permissible concentration. The developed method has been validated in accordance with the requirements of Standard No. PN-EN 482 and good validation results were obtained. The method can be used for assessing occupational exposure to compounds of manganese, nickel and iron and associated risk to workers’ health. The developed method of determining compounds of manganese, nickel and iron has been recorded as an analytical procedure (see Appendix). This article discusses the problems of occupational safety and health, which are covered by health sciences and environmental engineering.
PL
Wolfram jest metalem przejściowym, który występuje w skorupie ziemskiej w postaci minerałów, z których po wydobyciu jest ekstrahowany. Brakuje danych na temat chronicznych efektów kontaktu z wolframem. Wolfram metaliczny w postaci drobnego proszku jest łatwopalny i może powodować mechaniczne podrażnienie skóry i oczu. Istnieją rozpuszczalne związki wolframu, które są sklasyfikowane jako związki toksyczne, powodujące uszkodzenie oczu i zagrażające środowisku wodnemu. Celem prac badawczych była nowelizacja normy PN-Z-04221-3:1996 dotyczącej oznaczania rozpuszczalnych związków wolframu na stanowiskach pracy metodą spektrofotometryczną z rodankiem potasu. Nowelizacja normy została przeprowadzona, ponieważ norma PN-Z-04221-3 opisuje metodę, w której oznaczalność wynosi 0,25 wartości NDS, a zgodnie z normą europejską PN-EN 482 oznaczalność metody musi być w zakresie 0,1 ÷ 2 NDS. Metoda polega na zatrzymaniu aerozolu rozpuszczalnych związków wolframu na filtrze z mieszaniny estrów celulozowych, a następnie rozpuszczeniu ich w wodzie. W kolejnym etapie wolfram redukowany jest z użyciem chlorku cyny, a następnie ulega reakcji z rodankiem potasu, dając barwny kompleks, który należy ekstrahować alkoholem izoamylowym, aby następnie zmierzyć absorbancję ekstraktu na spektrofotometrze UV-Vis. Pomiary wykonano z użyciem spektrofotometru UV-Vis Heλios firmy ThermoSpectronic model Beta. Wymagania walidacyjne przedstawione w normie europejskiej PN-EN 482 zostały spełnione przy wykonywaniu pomiarów. Dzięki metodzie można oznaczać znajdujące się w powietrzu rozpuszczalne związki wolframu o stężeniach 0,1 ÷ 2 mg/m³ . Granica oznaczalności LOQ wynosi 1,875 ng. Precyzja pomiarów wynosi 5,06%, a niepewność rozszerzona 22,09%. Metoda oznaczania rozpuszczalnych związków wolframu została przedstawiona w postaci procedury analitycznej, którą zamieszczono w załączniku. Zakres tematyczny artykułu obejmuje zagadnienia zdrowia oraz bezpieczeństwa i higieny środowiska pracy będące przedmiotem badań z zakresu nauk o zdrowiu oraz inżynierii środowiska.
EN
Tungsten is a transition metal which occurs in the Earth’s crust as minerals which after being mined is extracted. There is no data on chronic effects of contact with tungsten, although fine tungsten powder is flammable and can cause mechanical irritation to skin and eyes. However, there are soluble tungsten compounds, which are classified as toxic, causing damage to the eyes, and being harmful to the aquatic environment. The aim of the study was to amend Standard No. PN-Z-04221-3 determination of soluble tungsten compounds in workplace air using spectrophotometric method with potassium thiocyanate. The amendment was performed because Standard No. PN-Z-04221-3 describes a method in which the quantification is 0.25 mg/m³ , according to European Standard No. EN 482 the quantification of method must be in range of 0.1 – 2 mg/m³ . The method is based on depositing soluble tungsten compounds on a cellulose esters filter and then dissolving them in water. Then tungsten is reduced with tin chloride, after reaction with potassium thiocyanate, tungsten becomes a complex. Tungsten complex should be extracted with isoamyl alcohol and then absorbance should be measured on a UV-Vis spectrophotometer. The tests were performed with the UV-Vis Heλios spectrophotometer by ThermoSpectronic model Beta. The validation requirements of European Standard No. EN 482 were met. With this method soluble tungsten compounds in air can be determined at concentration of 0.1 – 2 mg/m³ . The limit of quantification (LOQ) is 1.875 ng. The overall accuracy of the method is 5.06% and its relative total uncertainty is 22.09%. The method for determining tungsten has been recorded in a form of an analytical procedure (see Appendix). This article discusses problems of occupational safety and health, which are covered by health sciences and environmental engineering.
PL
Nikiel dzięki swoim właściwościom fizykochemicznym jest stosowany do wytwarzania stopów o wysokiej wytrzymałości, odpornych na korozję i temperaturę, o wysokiej rezystancji i kwasoodpornych. Nikiel w postaci drobnego proszku może wywoływać odpowiedź alergiczną w kontakcie ze skórą, udowodniono również właściwości rakotwórcze przy długotrwałym narażeniu na pył niklowy. Zgodnie z proponowaną dyrektywą Parlamentu Europejskiego nr 2020/0262 zaproponowano wartość najwyższego dopuszczalnego stężenia (NDS) w powietrzu na stanowiskach pracy dla frakcji wdychalnej 0,05 mg/m³ , a dla frakcji respirabilnej 0,01 mg/m³ (2020/0262/COD). Celem badań było opracowanie metody oznaczania niklu do oceny narażenia zawodowego w zakresie 1/10 ÷ 2 zaproponowanych wartości NDS. Metoda polega na: pobraniu aerozolu niklu i jego związków zawartych w powietrzu na filtr, mineralizacji filtra w kwasie azotowym(V) i kwasie chlorowodorowym w podwyższonej temperaturze, a następnie oznaczeniu zawartości niklu w próbce z zastosowaniem absorpcyjnej spektrometrii atomowej (AAS) z atomizacją w płomieniu. Metoda oznaczania niklu została przedstawiona w postaci procedury analitycznej, którą zamieszczono w załączniku. Zakres tematyczny artykułu obejmuje zagadnienia zdrowia oraz bezpieczeństwa i higieny środowiska pracy będące przedmiotem badań z zakresu nauk o zdrowiu i inżynierii środowiska.
EN
Nickel due to its physicochemical properties is used to produce high strength, corrosion resistant, temperature resistant, high resistance and acid resistant alloys. Nickel in the form of fine powder can induce an allergic response when in contact with the skin, carcinogenic properties have been proven with long-term exposure to nickel dust. According to the proposed directive of the European Parliament No. 2020/0262, a value of maximum allowable concentration (MAC) in a workplace air in Poland for the inhalable fraction should be at 0.05 mg/m³ and for the respirable fraction at 0.01 mg/m³ (2020/0262/COD). The aim of this study was to develop a method for determining nickel in the range of 1/10 ÷ 2 of the MAC. The method is based on gathering nickel aerosol and its compounds contained in the air on a filter, filter mineralization in nitric acid(V) and hydrochloric acid at elevated temperature then determination of nickel content in the sample using atomic absorption spectrometry (AAS) with flame atomization. The method for the determination of nickel is presented in the form of an analytical procedure, which is included in the appendix. This article discusses the problems of occupational safety and health, which are covered by health sciences and environmental engineering.
PL
Furan jest bezbarwną, bardzo lotną i łatwopalną cieczą o charakterystycznym eterowym zapachu. Występuje naturalnie w niektórych gatunkach drewna, powstaje podczas spalania drewna, tytoniu i paliw, a także obróbki termicznej żywności. W przemyśle furan jest stosowany jako półprodukt w syntezie organicznej, rozpuszczalnik żywic, przy produkcji lakierów, leków, stabilizatorów i insektycydów, a także do produkcji związków chemicznych o strukturze polimerycznej i związków kompleksowych. Działanie rakotwórcze na zwierzęta było podstawą do uznania furanu za substancję o prawdopodobnym działaniu rakotwórczym na ludzi. Celem prac badawczych było opracowanie i walidacja metody oznaczania furanu w powietrzu na stanowiskach pracy. Opracowana metoda oznaczania furanu polega na adsorpcji par tej substancji na węglu łupin z orzecha kokosowego, ekstrakcji za pomocą roztworu butan-1-olu w toluenie i analizie chromatograficznej tak otrzymanego roztworu. Do badań wykorzystano chromatograf gazowy sprzężony ze spektrometrem mas (GC-MS), wyposażony w niepolarną kolumnę kapilarną HP-PONA (o długości 50 m, średnicy 0,2 mm i grubości filmu fazy stacjonarnej 0,5 µm). Opracowana metoda jest liniowa w zakresie stężeń 0,05 ÷ 1,0 µg/ml, co odpowiada zakresowi 0,005 ÷ 0,1 mg/m³ dla próbki powietrza o objętości 10 l. Opracowana metoda analityczna umożliwia oznaczanie furanu w powietrzu na stanowiskach pracy w obecności substancji współwystępujących. Metoda charakteryzuje się dobrą precyzją i dokładnością i spełnia wymagania normy PN-EN 482 dla procedur dotyczących oznaczania czynników chemicznych. Opracowana metoda oznaczania furanu w powietrzu na stanowiskach pracy została zapisana w postaci procedury analitycznej, którą zamieszczono w załączniku. Zakres tematyczny artykułu obejmuje zagadnienia zdrowia oraz bezpieczeństwa i higieny środowiska pracy będące przedmiotem badań z zakresu nauk o zdrowiu oraz inżynierii środowiska.
EN
Furan is colorless, highly volatile and flammable liquid with a specific ether odor. In nature it occurs in some species of wood, it is formed during burning process of wood, tobacco, fuels and also in thermal food processing. In industry furan is used as an intermediate in organic synthesis, resins solvent, during production of lacquer, drugs, stabilizers, insecticides and also in production of chemical compounds which have polymeric and coordination structure. Carcinogenic effect on animals was a base of recognition that furan is a substance which is probably also carcinogenic on humans. The aim of this study was to develop and validate a method of determining furan in workplace air. Developed determination method of furan relies on vapor absorption of this substance on coconut shell charcoal. Furan was extracted by 5% butan-1-ol solution in toluene. Obtained solution was analyzed with chromatography. The study was performed with gas chromatograph coupled with mass spectrometer (GC-MS), equipped with non-polar HP-PONA capillary column (length 50 m, diameter 0.2 mm and the film thickness of the stationary phase 0.5 µm). Developed method is linear in the concentration range of 0.05–1.0 µg/ml, which is equivalent to the range of 0.005–0.1 mg/m³ for 10-L air sample. The analytical method described in this paper makes it possible to determine furan in workplace air in the presence of comorbid substances. The method is precise, accurate and it meets the criteria for procedures for determining chemical agents listed in Standard No. PN-EN 482. The developed method of determining furan in workplace air has been recorded as an analytical procedure (see Appendix). This article discusses the problems of occupational safety and health, which are covered by health sciences and environmental engineering.
PL
Dinitrotoluen (DNT) to żółte, krystaliczne ciało stałe o charakterystycznym zapachu. Może składać się z sześciu izomerów, ale tylko dwa (2,4-DNT i 2,6-DNT) mają znaczenie przemysłowe. Dinitrotoluen może powodować nowotwory. Celem prac badawczych było opracowanie metody oznaczania mieszaniny izomerów dinitrotoluenu w powietrzu na stanowiskach pracy, która umożliwi oznaczanie jego stężeń na poziomie 0,033 mg/m³. Opracowana metoda polega na: zatrzymaniu zawartej w powietrzu mieszaniny izomerów dinitrotoluenu na włóknie szklanym i żelu krzemionkowym, ekstrakcji metanolem i analizie chromatograficznej otrzymanego roztworu. Badania wykonano z zastosowaniem chro-matografu cieczowego (HPLC) serii 1200 firmy Agilent Technologies z detektorem diodowym (DAD). Walidację metody przeprowadzono zgodnie z wymaganiami zawartymi w normie europejskiej PN-EN 482. Metoda umożliwia oznaczanie mieszaniny izomerów dinitrotoluenu w powietrzu środowiska pracy w zakresie stężeń 0,033 ÷ 0,66 mg/m³. Opisywana metoda analityczna umożliwia oznaczanie mieszaniny izomerów dinitrotoluenu w powietrzu na stanowiskach pracy, w obecności: tolueno-2,4-diaminy, tolueno-2,6-diaminy, diizocyjanianu tolueno-2,4-diylu, diizocyjanianu tolueno-2,6 -diylu i toluenu. Opracowana metoda oznaczania mieszaniny izomerów dinitrotoluenu w powietrzu na stanowiskach pracy została zapisana w postaci procedury analitycznej, którą zamieszczono w załączniku. Zakres tematyczny artykułu obejmuje zagadnienia zdrowia oraz bezpieczeństwa i higieny środowiska pracy będące przedmiotem badań z zakresu nauk o zdrowiu oraz inżynierii środowiska.
EN
Dinitrotoluene (DNT) is a yellow, crystalline solid with a characteristic odor. It may consist of 6 isomers, but only two (2,4-DNT and 2,6-DNT) are of industrial importance. DNT can cause cancer. The aim of this study was to develop a method for determining mixture of DNT isomers in workplace air, which will allow to determine its concentration at the level of 0.033 mg/m³ . The method is based on the collection of the mixture of dinitrotoluene isomers contained in the air on glass fiber and silica gel, extraction with methanol and chromatographic analysis of obtained solution. The tests were performed using a liquid chromatograph (HPLC) 1200 series from Agilent Technologies with a diode array detector (DAD). The method was validated in accordance with the requirements of Standard No. EN 482. The method allows to determine mixture of DNT isomers in the workplace air in the concentration range: 0.033–0.66 mg/m³ . The described method makes it possible to determine mixture of DNT isomers in the workplace air in the presence of: toluene-2,4-diamine, toluene-2,6-diamine, toluene-2,4-diyl diisocyanate, toluene-2,6-diyl diisocyanate and toluene. The method for determining dinitrotoluene has been recorded as an analytical procedure (see Appendix). This article discusses the problems of occupational safety and health, which are covered by health sciences and environmental engineering.
PL
Bicyklo[4.4.0]dekan (BCD), znany też jako dekalina, to bezbarwna ciecz o zapachu: kamfory, mentolu i naftaliny. Związek może powodować śmierć w wyniku połknięcia i przedostania się do dróg oddechowych. Bicyklo[4.4.0]dekan może również wywoływać poważne oparzenia skóry i uszkodzenia oczu, działa toksycznie w przypadku wdychania. Celem prac badawczych było opracowanie metody oznaczania bicyklo[4.4.0]dekanu w powietrzu na stanowiskach pracy, która umożliwi oznaczanie jego stężeń na poziomie 5 mg/m³ . Metoda polega na: adsorpcji zawartych w badanym powietrzu par bicyklo[4.4.0]dekanu na węglu aktywnym, desorpcji roztworem acetonu w disiarczku węgla i analizie chromatograficznej otrzymanego roztworu. Badania wykonano z zastosowaniem chromatografu gazowego (GC) z detektorem płomieniowo-jonizacyjnym (FID) wyposażonym w kolumnę kapilarną DB-VRX (60 m × 0,25 mm, 1,4 µm). Walidację metody przeprowadzono zgodnie z wymaganiami zawartymi w normie europejskiej PN-EN 482. Metoda umożliwia oznaczanie bicyklo[4.4.0]dekanu w powietrzu środowiska pracy w zakresie stężeń 5 ÷ 200 mg/m³ . Metoda oznaczania bicyklo[4.4.0]dekanu została przedstawiona w postaci procedury analitycznej, którą zamieszczono w załączniku. Zakres tematyczny artykułu obejmuje zagadnienia zdrowia oraz bezpieczeństwa i higieny środowiska pracy będące przedmiotem badań z zakresu nauk o zdrowiu oraz inżynierii środowiska.
EN
Bicyclo[4.4.0]decane (BCD), also known as decalin, is a colorless liquid with the scent of camphor, menthol and naphthalene. This substance can be fatal if swallowed or entered a respiratory tract. It can cause severe skin burns and eye damage, and is toxic if inhaled. The aim of this study was to develop a method for determining BCD in workplace air, which will allow the determination of its concentrations at the level of 5 mg/m³ . The method was based on adsorption of BCD vapors on activated carbon, desorption with acetone solution in carbon disulfide and chromatographic analysis of the obtained solution. The study was performed with a gas chromatograph (GC) with a flame ionization detector (FID) equipped with a DB-VRX capillary column (60 m × 0.25 mm, 1.4 µm). The method was validated in accordance with the requirements of Standard No. EN 482. The method allows the determination BCD in workplace air in the concentration range 5–200 mg/m³ . The method for determining BCD has been recorded in the form of an analytical procedure (see Appendix). This article discusses the problems of occupational safety and health, which are covered by health sciences and environmental engineering.
PL
Benzydyna to białe krystaliczne ciało stałe stosowane dawniej do produkcji barwników, a obecnie w analizie chemicznej. Benzydyna może powodować nowotwory pęcherza moczowego u ludzi. Celem prac badawczych było opracowanie metody oznaczania benzydyny w powietrzu na stanowiskach pracy, która umożliwi oznaczanie jej stężeń na jak najniższym poziomie. Metoda polega na: chemisorpcji benzydyny na filtrze z włókna szklanego z naniesionym kwasem siarkowym(VI), ekstrakcji disiarczanu benzydyny wodą i roztworem wodorotlenku sodu, a po ekstrakcji do fazy stałej (SPE) eluowaniu benzydyny z kolumienki do SPE przy użyciu 1 ml metanolu. Otrzymany roztwór jest analizowany chromatograficznie. Badania wykonano z zastosowaniem chromatografu cieczowego (HPLC) serii 1200 firmy Agilent Technologies z detektorem fluorescencyjnym (FLD). Oznaczenia prowadzono z zastosowaniem kolumny Ultra C18 (250 × 4,6 mm, o uziarnieniu 5 μm). Walidację metody przeprowadzono zgodnie z wymaganiami zawartymi w normie europejskiej PN-EN 482. Metoda umożliwia oznaczanie benzydyny w powietrzu środowiska pracy w zakresie stężeń 0,1 ÷ 2 μg/m³. Granica oznaczalności LOQ wynosi 0,25 ng/m³. Całkowita precyzja badania wyniosła 5,36%, a niepewność rozszerzona metody 23%. Opisywana metoda umożliwia selektywne oznaczanie benzydyny w powietrzu na stanowiskach pracy, w obecności większości substancji, które nie wykazują zjawiska fluorescencji, a także w obecności: bifenylo-4-aminy, 1-naftyloaminy i 2-naftyloaminy. Metoda oznaczania benzydyny została przedstawiona w postaci procedury analitycznej, którą zamieszczono w załączniku. Zakres tematyczny artykułu obejmuje zagadnienia zdrowia oraz bezpieczeństwa i higieny środowiska pracy będące przedmiotem badań z zakresu nauk o zdrowiu oraz inżynierii środowiska.
EN
Benzidine is a white, crystalline solid. In the past, it was used mainly for the production of dyes, and nowadays in chemical analysis. Benzidine can cause bladder cancer to humans. The aim of this study was to develop a method for determining benzidine in workplace air, which will makes it possible to determine its concentrations at the lowest possible level. The method is based on the chemisorption of benzidine on a glass fiber filter treated with sulphuric acid(VI), extraction of benzidine disulphate with water and sodium hydroxide solution, and after extraction to the solid phase (SPE), benzidine is eluted from the SPE cartridge using 1 ml of methanol. The obtained solution is analyzed chromatographically. The tests were performed using a liquid chromatograph (HPLC) 1200 series of Agilent Technologies with a fluorescence detector (FLD). Determinations were performed using an Ultra C18 column (250 × 4.6 mm, dp = 5 µm). The procedure was validated according to Standard No. EN 482. The method can be used to determine benzidine in workplace air in the concentration range from 0.1 to 2 µg/m³ . The limit of quantification (LOQ) is 0.25 ng/m³ . The overall accuracy of the method was 5.36% and its relative total uncertainty was 23%. This method makes it possible to selectively determine benzidine in workplace air in the presence of most substances that do not show fluorescence, and in the presence of: biphenyl-4-amine, 1-naphthylamine and 2-naphthylamine, which show fluorescence. The method of determining benzidine has been recorded as an analytical procedure (see Appendix). This article discusses the problems of occupational safety and health, which are covered by health sciences and environmental engineering.
PL
Arsen jest pierwiastkiem chemicznym zaliczanym do metaloidów (półmetali). Niektóre związki arsenu zostały sklasyfikowane (wg CLP) jako substancje rakotwórcze powodujące nowotwory skóry, układu oddechowego, wątroby i białaczkę. W przemyśle na arsen i jego związki narażeni są pracownicy zatrudnieni przy jego wydobyciu, w hutnictwie rud metali nieżelaznych, w procesach rafinacji metali, przy produkcji stopów, półprzewodników, pigmentów i insektycydów. Obowiązująca wartość normatywu higienicznego dla frakcji wdychalnej aerozolu arsenu i jego związków nieorganicznych w przeliczeniu na As w powietrzu na stanowiskach pracy wynosi 0,01 mg/m³ . Opracowano metodę umożliwiającą oznaczanie tej substancji w powietrzu w zakresie 0,1 ÷ 2 wartości normatywu higienicznego, zgodną z wymaganiami zawartymi w normie europejskiej PN-EN 482. Arsen oznacza się z wykorzystaniem absorpcyjnej spektrometrii atomowej z elektrotermiczną atomizacją (ET-AAS) w zakresie stężeń 5,00 ÷ 100,0 µg/l, co pozwala na oznaczanie arsenu i jego nieorganicznych związków w powietrzu w zakresie: 0,0010 ÷ 0,021 mg/m³ (dla objętości próbki powietrza – 480 l). Przedstawiona procedura umożliwia oznaczanie tej substancji z zastosowaniem dozymetrii indywidualnej. Zakres tematyczny artykułu obejmuje zagadnienia zdrowia oraz bezpieczeństwa i higieny środowiska pracy będące przedmiotem badań z zakresu nauk o zdrowiu oraz inżynierii środowiska.
EN
Arsenic is a chemical element classified as metalloids (semi-metals). Some arsenic compounds have been classified (according to CLP) as carcinogens, causing cancers of skin, respiratory system, liver and leukemia. In the industry, workers are exposed to arsenic and its compounds in its extraction, in metallurgy of non-ferrous metal ores, in metal refining processes, in the production of alloys, semiconductors, pigments and insecticides. In Poland, binding value of the hygienic standard (NDS) at workplace air, for the inhalable fraction of arsenic aerosol and its inorganic compounds, converted into As is 0.01 mg/m³ . A determination method has been developed that enables the determination of this substance in the air of 0.1 − 2 values of the hygiene standard, in accordance with the requirements of Standard PN-EN 482. Arsenic is determined with the atomic absorption spectrometry with electrothermal atomization (ET-AAS), in the concentration range of 5.00 − 100.0 μg/l which allows the determination of arsenic and its compounds in workplace air in the range of 0.0010 − 0.021 mg/m³ (for 480-L air sample). The presented procedure enables the determination of this substance with the use of individual dosimetry. This article discusses the problems of occupational safety and health, which are covered by health sciences and environmental engineering.
PL
Akrylonitryl (AN) jest wysoce łatwopalną, bezbarwną cieczą o nieprzyjemnym zapachu. W przemyśle akrylonitryl jest stosowany głównie do produkcji poliakrylonitrylu (PAN) i jego kopolimerów. Akrylonitryl może powodować raka. Celem prac badawczych było opracowanie metody oznaczania akrylonitrylu w powietrzu na stanowiskach pracy, która umożliwi oznaczanie jego stężeń na poziomie 0,1 mg/m3 . Metoda polega na: adsorpcji zawartych w badanym powietrzu par akrylonitrylu na węglu aktywnym, desorpcji roztworem acetonu w disiarczku węgla i analizie chromatograficznej otrzymanego roztworu. Badania wykonano z zastosowaniem chromatografu gazowego (GC) z detektorem płomieniowo-jonizacyjnym (FID) wyposażonym w kolumnę kapilarną DB-VRX (60 m × 0,25 mm, 1,4 µm). Walidację metody przeprowadzono zgodnie z wymaganiami zawartymi w normie europejskiej PN-EN 482. Metoda umożliwia oznaczanie akrylonitrylu w powietrzu środowiska pracy w zakresie stężeń 0,1 ÷ 2 mg/m³ . Metoda oznaczania akrylonitrylu została przedstawiona w postaci procedury analitycznej, którą zamieszczono w załączniku. Zakres tematyczny artykułu obejmuje zagadnienia zdrowia oraz bezpieczeństwa i higieny środowiska pracy będące przedmiotem badań z zakresu nauk o zdrowiu oraz inżynierii środowiska.
EN
Acrylonitrile (AN) is highly flammable, colorless liquid with an unpleasant odor. Acrylonitrile is used in industry to produce polyacrylonitrile (PAN) and its copolymers. Acrylonitrile can cause cancer. The aim of this study was to develop a method for determining acrylonitrile in workplace air which will allow determination of its concentrations at the level of 0.1 mg/m3 . The method was based on adsorption of acrylonitrile vapors on activated carbon, desorption with acetone solution in carbon disulfide and chromatographic analysis of the obtained solution. The study was performed using a gas chromatograph (GC) with a flame ionization detector (FID) equipped with a DB-VRX capillary column (60 m × 0.25 mm, 1.4 µm). The method was validated in accordance with the requirements of Standard No. EN 482. The method allows the determination of acrylonitrile in workplace air at the concentration range from 0.1 to 2 mg/m³ . The method for determining acrylonitrile has been recorded in the form of an analytical procedure (see Appendix). This article discusses the problems of occupational safety and health, which are covered by health sciences and environmental engineering.
first rewind previous Strona / 8 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.