Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!

Znaleziono wyników: 1

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  wind turbine blade icing
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Wind turbine blade icing data has the characteristics of multi-source and multi-variable. It is difficult to characterize and identify the icing failure with multi-scale features. In this paper, a novel Non-negative Matrix Factorization-Dynamic-inner Canonical Correlation Analysis (NMF-DiCCA) based on Gated Recurrent Unit (GRU) and Stack Sparse Autoencoder (SSAE) algorithm is proposed to solve this problem. Firstly, using NMF instead of Singular Value Decomposition(SVD) decomposition method in DiCCA algorithm, the NMF-DiCCA is applied to obtain the dynamic latent variable of time serie. Secondly, the latent structure features S of dynamic latent variable is captured by SSAE. Thirdly, the temporal correlation hidden feature H of dynamic latent variable is extracted by GRU. Finally, the attention weight distribution between latent structure S and temporal correlation hidden feature H is integrated using the attention mechanism, and the fusion feature is reconstructed using the improved SSAE(ISSAE) based on GRU and SSAE. For the first time, dynamic latent variable analysis and deep learning representation algorithm are applied to icing failure identification of wind turbine blade, and effective results are obtained.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.