W pracy przedstawiono wyniki obliczeń wpływu odzysku ciepła jawnego i utajonego spalin wylotowych z kotła energetycznego bloku o mocy 900 MW zasilanego węglem brunatnym na pracę instalacji mokrego odsiarczania spalin (IOS). Obliczenia przeprowadzono na podstawie modelu matematycznego wykorzystującego dane z prawdziwej rośliny. Oprócz pozytywnego wpływu układu odzysku ciepła (HRS) na sprawność cieplną bloku energetycznego oraz wstępnego oczyszczenia spalin z pyłów i gazów kwaśnych, wyniki obliczeń wykazały bardzo istotny wpływ na pracę bloku energetycznego. IOS. Główna zmiana dotyczy masowego przepływu wody stosowanej w absorberze w celu schłodzenia spalin do wymaganej temperatury. Obliczony maksymalny spadek zapotrzebowania elektrowni na wodę uzupełniającą (przy 167,5 MW odzysku ciepła) wynosi 185,9 Mg/h. Gdy do uzupełniania używany jest kondensat HRS, zapotrzebowanie na wodę surową będzie zerowe. Dodatkowo HRS w wyniku kondensacji części pary wodnej zawartej w spalinach powoduje częściowe zasiarczenie spalin w wymienniku HRS. Zmniejsza to obciążenie IOS, w tym mniejsze zapotrzebowanie na sorbent i wodę technologiczną używaną do przygotowania roztworu sorbentu. Strumień spalin kierowany do instalacji i odprowadzany do atmosfery przez chłodnię kominową zmniejsza się o ok. 9%. Wartością dodaną proponowanego rozwiązania jest zabezpieczenie wnętrza pochłaniaczy IOS przed wysoką temperaturą spalin w przypadku awarii zasilania instalacji (blackoutu) lub innej tego typu awarii, odcinającej dopływ prądu do pomp IMOS.
EN
This paper presents the results of calculations of the influence of sensible and latent heat recovery from flue gas of a 900 MW power unit Bieled with lignite on the operation of the wet flue gas desulfurization plant (FGD) The calculations based on the mathematical model using data from the real plant. In addition to the positive Impact of the heat recovery system (HRS) on the thermal efficiency of the power unit and the initial cleaning of flue gas from dust and acid gases, the results of the calculations showed a very significant impact on the operation of the FGD. The main change concerns the water mass flow used in the absorber to cool the flue gas to the required temperature. The calculated maximum decrease in the demand for make-up water by the plant (with 167.5 MW of hęatgrecovery) is 185.9 Mg/hr. When HRS condensate is used for top-up, the raw water requirement will be zero. In addition, the HRS with condensation of part of the water vapor contained in the flue gas causes partial flue gas dęsulfurization in the HRS exchanger. This reduces the load on the FGD, including the lower need of sorbent and process water used to prepare the sorbent solution. The flue gas stream directed to the installation and discharged to the atmosphere through the cooling tower is reduced by approx. 9%. The added value of the proposed solution IS thc protection of the interior of the FGD absorbers against high flue gas temperature in the event of a system power failure (blackout) or other such failure, cutting off the power supply to FGD pumps.
PGE Energia Ciepła zmodernizowała w Elektrociepłowni Gdyńskiej układ odsiarczania ścieków z mokrego odsiarczania spalin, rozbudowując go o innowacyjne rozwiązanie, jakim jest instalacja wykonana w technologii INNUPS. Wdrożenie to jest odpowiedzią na potrzebę poszukiwania nowych, niezawodnych i dużo sprawniejszych metod oczyszczania ścieków pochodzących z mokrego odsiarczania spalin.
The reduction of sulphur dioxide (SO2), nitrogen oxides (NOx) and mercury (Hg) emissions is an important concern to environmental pollution. During recent years, the relevance of these pollutants to societal environmental issues and human health concerns has become increasingly apparent. Additionally, regulations such as the European Union directive on Large Combustion Plants (LCP, 2001/80/EC), the directive on Industrial Emissions (IED) and the United States Clean Air Transport Rule (CATR) require further emission reduction of these pollutants [5, 7, 19]. SO2, NOx and Hg are primarily released during coal combustion processes in the energy sector. Coal is main fuel of the Polish power sector - more than 90% of Polish power stations are coal-fired [13]. In the absence of national policies and binding international agreements concerning the limitation or reduction of greenhouse gas emissions, world coal consumption is projected to increase approximately 56% from 2007 to 2035 [11]. Increasing demand for energy to fuel electricity generation and industrial production in the region is expected to be met in large part by coal. Coal-fired generation increases by an annual average of 2.3%, making coal the second fastest-growing source for electricity generation in the IEA projection [11]. The environmental and health issues motivate the development of "clean coal technologies" with capture and sequestration of CO2, and also the development of flue gas cleaning technologies from coal-fired boilers. EU Directive LCP, became effective in 2016 and required to limit NOx and SO2 to 200 mg/Nm3 concentrations from large coal-fired boilers. This demands require a further investment in secondary methods of NOx cleaning, [7, 15] because commercially available primary methods of NOx reduction are not able to obtain these emission limits. United States Environmental Protection Agency has recently proposed the Clean Air Transport Rule (CATR) (to replace EPA's 2005 Clean Interstate Rule). CATR requires reduction of NOx and SO2 emissions - 71% for SO2 and 52% for NOx - from 2005 levels [5]. Because of these large emission reduction requirements, a significant increase in the use of wet-FGD technology is expected over the next decade. EPA has also indicated an intention to regulate emission of Hg and other hazardous air pollutants (HAPs) from coal-fired electric utility boilers [21]. Most Polish coal-fired utility boilers use the primary methods of NOx control, as low-NOx burners or the modification of combustion processes, but they are not able to reduce NOx emission to that required by the LCP directive level. Commercially available secondary methods of NOx control are selective catalytic reduction (SCR) using ammonia and selective non-catalytic reduction (SNCR) using urea. Additional methods of secondary NOx control are sorption methods and electro-beam technologies [4, 6, 20, 22]. Another option is multipollutant control, in which a minimum of two pollutants can be captured by one device. Different types of multipollutant control techniques have been intensively developed over the last several years [1, 4, 8÷10, 12, 14]. The concept of multipollutant control in a wet scrubber seems to be one of the most interesting and is the subject of intensive reseach [1, 8, 10, 12]. Wet scrubbers are the most popular flue gas desulphurization system worldwide, for example, in the US 86% of all installed flue gas desulphurization systems are wet scrubbed, and almost 70% of those wet scrubbers use the limestone process [17]. This paper presents results on the simultaneous removal of SO2 with NOx and Hg in a wet limestone scrubber. Experiments were performed at bench and pilot-scale on simulated coal-fired flue gas. Sodium chlorite, as the most effective among tested oxidant additives, was used in most experiments to enhance the effectiveenss of the wet limestone scrubber. The research is focused on achieving maximum NOx, Hg and SO2 removal efficiencies from flue gas, which may aid in the full fillment of regulatory requirements. Parameters that can affect the removal process and which might be present in real conditions are also examined.
PL
Redukcja emisji dwutlenku siarki (SO2), tlenków azotu (NOx), a także rtęci (Hg) jest istotnym problemem ochrony środowiska. Związane jest to z coraz większą świadomością społeczeństwa o zagrożeniach, jakie niesie ze sobą zanieczyszczenie powietrza, troską o zdrowie oraz z dyrektywami unijnymi jak LCP-2001/80/EC, IED w Europie czy CATR w USA, które wymuszają dodatkowe ograniczenia tychże substancji [5, 6, 19]. Powyższe aspekty motywują do rozwoju tzw. "czystych technologii węglowych", a także technologii ograniczania emisji zanieczyszczeń z kotłów opalanych węglem. Dyrektywa LCP (Large Combustion Plants Directive) nakłada obowiązek oczyszczenia spalin z dużych obiektów energetycznych do poziomu 200 mg NOx/Nm3 i 200 mg SO2/Nm3 po 2016 r. [7]. Dyrektywa IED (Industrial Emissions Directive) dotycząca emisji przemysłowych, zaostrza jeszcze powyższe limity po roku 2016 (2020 w Polsce) [19]. Dyrektywy te praktycznie nakładają obowiązek modernizacji lub zainstalowania nowoczesnych, wysokosprawnych instalacji odsiarczania i odazotowania na większość polskich elektrowni [15]. Dlatego też, oprócz dalszego rozwoju komercyjnie dostępnych technologii takich jak SCR (Selektywna Redukcja Katalityczna) i SNCR (Nieselektywna Redukcja Katalityczna), opracowywane są również inne techniki oczyszczania spalin z NOx, do których należą m.in. techniki "multipollutant" (zintegrowanego oczyszczania), które są przedmiotem badań autorów niniejszej publikacji. W prezentowanych badaniach podjęto próbę opracowania metody redukcji emisji SO2, NOx i Hg w układach mokrego odsiarczania spalin. W artykule przedstawiono wyniki badań laboratoryjnych i pilotowych. Celem pracy było uzyskanie wysokich, redukcji emisji zanieczyszczeń oraz zbadanie i ustalenie optymalnych warunków prowadzenia procesu (stężenie jonów ClO2- w zawiesinie sorpcyjnej, wpływ SO2 i NOx w gazach spalinowych oraz pH cieczy sorpcyjnej). Badania przeprowadzono w skali laboratoryjnej i pilotowej na gazach Symulujących składem gazy spalinowe z procesu spalania węgla. Proces usuwania zanieczyszczeń przebiegał w absorberach symulujących mokre absorbery odsiarczania spalin, zasilanych wodną zawiesiną węglanu wapnia. Badania pilotowe przeprowadzono w absorberze trzykolumnowym z wieżą natleniającą Badania laboratoryjne wykazały bardzo wysoką skuteczność usuwania SO2, NOx i Hg ze spalin, przy niskim stężeniu ClO2- w zawiesinie sorpcyjnej (0.005M). Hg i NO zostały całkowicie usunięte ze spalin, natomiast absorpcja NOx (w postaci NO2) wynosiła ok. 50%. Większe stężenia ClO2- w zawiesinie nie wpływały na poprawę efektywności procesu. Wstępne badania pilotowe wykazały niższe, lecz obiecujące skuteczności usuwania zanieczyszczeń (~70% Hg, ~30% NO, ~15% NOx). Wykazano, że obecność SO2 w spalinach jest bardzo istotnym parametrem wpływających na skuteczność usuwania NOx (NO i NO2) i Hg. Z kolei brak SO2 w spalinach powodował drastyczny spadek skuteczności usuwania zanieczyszczeń. Wykazano, że niewielka ilość SO2 w gazach spalinowych jest niezbędna do uzyskania wysokich redukcji stężeń NOx (NO i NO2) i Hg, natomiast zbyt wysokie stężenie SO2 w spalinach powoduje dezaktywację reakcji Hg-NaClO2-NO-NaClO2 i wpływa negatywnie na sam proces oczyszczania. Udowodniono również, że chloryn sodu jest skutecznym związkiem utleniającym NO i Hg0 w absorberze w zakresie pH 4.0÷7.0.
Drawing from 30 000 MW of world-wide FGD experience, ABB has developed a system designed to reduce the overall cost of SO2 compliance. The advanced wet scrubbing system is being demonstrated at Ohio Edison's Niles Plant at the 130 MW level. In the development work ABB has put a lot of effort into understanding of the two basic processes that determine the size of a wet FGD system, i.e. gas-liquid mass transfer of the droplets in the spray zone and the impact of various process parameters on the dissolution rate of limestone. This paper present the derived models and the results both in terms of scientific qualitative results but also how these results have been implemented into ABBs advanced WFGD system design.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.