Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 4

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  wertebroplastyka
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Purpose: of the research is to physically modify the composition of bone cements with glassy carbon and cancellous bone to improve its performance, reduce polymerization temperature and reduce the ability of cements the effect of admixture on the phenomenon of relaxation. Design/methodology/approach: SpinePlex bone cement was modified with glassy carbon powder with 20-50 pm granulation with Maxgraft®. Maxgraft cancellous bone has been ground to 20-50 pm grains. Samples of unmodified cements (reference) and modified with glassy carbon and cancellous bone were prepared for the tests. The glassy carbon powder and ground cancellous bone were premixed with the cement copolymer powder, and then the premix prepared this way was spread in a liquid monomer. To delay the polymerization process, all components were cooled before mixing to 15°C. The addition of glassy carbon was 0.4 g and the addition of cancellous bone was 0.2 g per 20 g of cement powder, i.e. about 1.96% by mass. Polymerization temperature, relaxation and differential scanning calorimetry tests were performed on the samples made. Findings: Additives used allow: to reduce the polymerization temperature, as well as rheological properties. During the studies it was found that the additive which can meet the requirements is glassy carbon in form of powder and cancellous bone. Research limitations/implications: The results presented in the publication require further advanced research, which will be the subject of further modification attempts by the research team. Practical implications: The conducted tests showed a significant effect of glassy carbon as a modifier on the mechanical properties of cement after its solidification, but also on the course of the polymerization process. Temperature registration tests during crosslinking, tests of mechanical properties (behaviour of cement samples under load) and DSC differential scanning calorimetry analysis confirmed that the addition of glassy carbon had an effect on each of these aspects. Originality/value: The original in these studies is the possibility to improve fundamental properties of the selected bone cements by using different than commonly used additives.
EN
Purpose: The aim of this manuscript was to study and analyse the properties of bone cement (VertaPlex) before and after modification with glassy carbon (Alfa Aesar) and human bone (MaxGraft). Design/methodology/approach: To achieve the assumed goal, a series of samples was made - five samples for each mixture, where: 5 bone cement samples, 5 bone cement samples mixed with 20-50 μm glassy carbon in the ratio of 1 g carbon per 40 g of cement, and 5 samples of bone cement mixed with 20-50 μm glassy carbon and human bone in the ratio of 1 g of carbon per 40 g of cement and 0.4 g of bone per 40 g of cement. The produced samples (4 for each mixture, 1 was the reference sample) were subjected to tests - compression test, microscopic observations with a 3D microscope, surface profile tests and hardness tests. Findings: The study has shown that modifications with glassy carbon and bone change the mechanical properties, as well as the strength of the samples. Compression tests have shown that the material without admixtures is characterized by the highest compressive strength and the doping of the glassy carbon itself makes the material more brittle. A significant increase in hardness was also observed for samples with glassy carbon and bones after the pressing process. Practical implications: The study was made synthetically, without taking into account the effect of the environment of body fluids and the human body temperature. This study is an introduction to further considerations where samples for which these conditions will be applied are currently being prepared. Originality/value: For commercial use, in treatment of patients, cements modified with glassy carbon and bone glassy carbon have not been used so far. Due to the prerequisites of a positive effect of glassy carbon addition on osseointegration and biocompatibility, the study in this area has been undertaken.
EN
Purpose: This paper is a review of literature where the analyses of the commonly used bone cements were carried out especially: methods of manufacturing, surgical techniques, mechanical properties, biocompatibility studies as well as possibility of improvement some properties by using additives. Design/methodology/approach: The aim of this publication is the analysis of the state of knowledge and treatment methods on compression fractures, approximation of the specifics of compression fractures, presentation of minimally invasive percutaneous surgical techniques, description of features of the most common used bone cement on matrix Poly(methyl methacrylate) – (PMMA) and presentation cement parameters which affect potential postoperative complications. Findings: In considering to review of actual state of knowledge there is a need to find the additives which allow: to reduce the polymerization temperature, improve the biocompatibility as well as mechanical properties. During the studies it was found that the additive which can meet the requirements is glassy carbon in form of powder. Practical implications: Discussion allows to prepare samples during practical work with new kind additives in composite with bone cement as matrix. Originality/value: The original in this discussion is the possibility to improve fundamental properties of the selected bone cements by using different than commonly used additives.
PL
Radiologia zabiegowa (interwencyjna) to nie tylko przedstawiane w poprzednich artykułach na lamach IBM zabiegi wewnątrznaczyniowe. Obejmuje ona również szeroką gamę minimalnie inwazyjnych zabiegów wykonywanych pod kontrolą metod obrazowych (RTG, USG, TK), takich jak biopsje, ablacje guzów oraz interwencje na kręgosłupie omówione w poniższym artykule. Wertebroplastyka i kyfoplastyka są wykonywane u pacjentów ze złamaniami kompresyjnymi trzonów kręgowych. Polegają one na wstrzyknięciu do trzonu kręgowego przez specjalną igłę cementu akrylowego pod kontrolą promieni rentgenowskich. Głównym wskazaniem są silne dolegliwości bólowe u pacjentów ze złamaniami kompresyjnymi, utrzymujące się pomimo intensywnego leczenia farmakologicznego i usztywnienia gorsetem. Do innych wskazań należą przerzuty nowotworowe, naczyniaki trzonów oraz wg niektórych autorów również szpiczak mnogi. Zabiegi te mają przede wszystkim na celu redukcję bólu i poprawę jakości życia pacjentów.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.