Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  wedge flow
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
In the present work, the effect of various dimensionless parameters on the momentum, thermal and concentration boundary layer are analyzed. In this respect we have considered the MHD boundary layer flow of heat and transfer over a porous wedge surface in a nanofluid. The governing partial differential equations are converted into ordinary differential equations by using the similarity transformation. These ordinary differential equations are numerically solved using fourth order Runge–Kutta method along with shooting technique. The present results have been shown in a graphical and also in tabular form. The results indicate that the momentum boundary layer thickness reduces with increasing values of the pressure gradient parameter β for different situations and also for the magnetic parameter M but increases for the velocity ratio parameter λ and permeability parameter K*. The heat transfer rate increases for the pressure gradient parameter β, velocity ratio parameter λ, Brownian motion parameter Nb and Prandtl number Pr but opposite result is found for the increasing values of the thermoporesis parameter Nt. The nanoparticle concentration rate increases with an increase in the pressure gradient parameter β, velocity ratio parameter λ, Brownian motion parameter Nb and Lewis number Le, but decreases for the thermoporesis parameter Nt. Finally, the numerical results has compared with previously published studies and found to be in good agreement. So the validity of our results is ensured.
EN
Second law analysis (entropy generation) for the steady two-dimensional laminar forced convection flow, heat and mass transfer of an incompressible viscous fluid past a nonlinearly stretching porous (permeable) wedge is numerically studied. The effects of viscous dissipation, temperature jump, and first-order chemical reaction on the flow over the wedge are also considered. The governing boundary layer equations for mass, momentum, energy and concentration are transformed using suitable similarity transformations to three nonlinear ordinary differential equations (ODEs). Then, the ODEs are solved by using a Keller’s box algorithm. The effects of various controlling parameters such as wedge angle parameter, velocity ratio parameter, suction/injection parameter, Prandtl number, Eckert number, temperature jump parameter, Schmidt number, and reaction rate parameter on dimensionless velocity, temperature, concentration, entropy generation number, and Bejan number are shown in graphs and analyzed. The results reveal that the entropy generation number increases with the increase of wedge angle parameter, while it decreases with the increase of velocity ratio parameter. Also, in order to validate the obtained numerical results of the present work, comparisons are made with the available results in the literature as special cases, and the results are found to be in a very good agreement.
PL
W pracy przedstawiono analizę numeryczną procesu produkcji entropi oraz transportu ciepła i masy w stacjonarnym, dwuwymiarowym przepływie konwekcyjnym cieczy lekkiej wzdłuż porowatego klina o nieliniowo zmiennym kącie rozwarcia. W analizie rozważono efekty związane z dyssypacją lepkościową, skokiem temperatury reakcjami chemicznymi pierwszego rzędu. Równania różniczkowe opisujące transport masy, pędu, energii i stężeń reagentów w warstwie przyściennej zostały przekształcone za pomoc˛a odpowiednich transformacji do układu trzech równań różniczkowych zwyczajnych. Trzymany układ został rozwiązany numerycznie za pomocą algorytmu typu box zaproponowanego przez Kellera. W pracy zbadano i przedstawiono w formie graficznej wpływ parametrów takich, jak kąt rozwarcia klina, intensywność transpiracji przez ścianę klina, liczby Prandtla, Eckerta i Schmidta, wielkość skoku temperatury i szybkość reakcji chemicznych na pola prędkości, temperatury i stężenia reagentów, produkcję entropii i liczbę Bejana. Otrzymane wyniki pokazują, że współczynnik produkcji entropii rośnie wraz z powiększaniem kąta klina i maleje wraz powiększaniem stosunku prędkości. W celu walidacji otrzymanych rezultatów, porównano je z wynikami innych dostępnych w literaturze badań i stwierdzono bardzo dobrą zgodność.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.