Let [...] be a sequence of proper lower semicontinuous convex functions on a weakly compactly generated Banach space. Conditions ensuring the weak* convergence of their subgradients are given.
Classical results on weakly compactly generated (WCG) Banach spaces imply the existence of projectional resolutions of identity (PRI) and the existence of many projections on separable sub-spaces (SCP). We address the questions if these can be the only projections in a nonseparable WCG space, in the sense that there is a PRI [wzór] such that any projection is the sum of an operator in the closure of the linear span of countably many P ∝'s (in the strong operator topology) and a separable range operator. Wark's modification of Shelah's and Steprans' construction provides an unconditional example for λ ω 2. We note that it is impossible for λ > ω 2.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.