Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 4

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  weak type inequality
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available remote Maximal Weak-Type Inequality for Orthogonal Harmonic Functions and Martingales
EN
Assume that u, v are conjugate harmonic functions on the unit disc of C, normalized so that u(0)=v(0)=0. Let u∗, |v|∗ stand for the one- and two-sided Brownian maxima of u and v, respectively. The paper contains the proof of the sharp weak-type estimate... [formula]. Actually, this estimate is shown to be true in the more general setting of differentially subordinate harmonic functions defined on Euclidean domains. The proof exploits a novel estimate for orthogonal martingales satisfying differential subordination.
EN
Let f be a martingale taking values in a Banach space B and let S(f) be its square function. We show that if B is a Hilbert space, then P(S(f) ≥1)≤√e∥f∥1and the constant √e is the best possible. This extends the result of Cox, who established this bound in the real case. Next, we show that this inequality characterizes Hilbert spaces in the following sense: if B is not a Hilbert space, then there is a martingale f for which the above weak-type estimate does not hold.
3
Content available remote A Weak-Type Inequality for Orthogonal Submartingales and Subharmonic Functions
EN
Let X be a submartingale starting from 0, and Y be a semimartingale which is orthogonal and strongly differentially subordinate to X. The paper contains the proof of the sharp estimate P(supt≥0|Yt|≥1)≤3.375…∥X∥1. As an application, a related weak-type inequality for smooth functions on Euclidean domains is established.
4
Content available remote Weak type inequality for the square function of a nonnegative submartingale
EN
Let ƒ be a nonnegative submartingale and S(ƒ) denote its square function. We show that for any λ > 0, λP(S(ƒ) ≥ λ) ≤ π/2||ƒ||1, and the constant π/2 is the best possible. The inequality is strict provided ||ƒ||1 ≠ 0.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.