Ograniczanie wyników
Czasopisma help
Autorzy help
Lata help
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 42

Liczba wyników na stronie
first rewind previous Strona / 3 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  water quality index
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 3 next fast forward last
EN
The present study aimed to assess the impact of leachates from the emerging cell on the water quality of the Limón stream in Ecuador. Five sampling points were selected as references using the NTE INEN 2176:2013 standard. Subsequently, these samples were analyzed in a laboratory using the standard methods for the examination of water and wastewater for the respective physicochemical analysis. The analysis results were compared with the Unified Text of Secondary Legislation of the Ministry of the Environment, and the water quality index (WQI) was determined according to the National Sanitary Foundation (NSF). Additionally, an environmental diagnosis was conducted based on the cause-effect matrix by Leopold to propose a strategy for the restoration and ecological recovery of the affected components. According to the obtained results, the sampling points closer to the leachate discharge showed high concentrations of dissolved oxygen, iron, fecal coliforms, biochemical oxygen demand (BOD), chemical oxygen demand (COD), and total suspended solids (TSS), which exceeded the maximum permissible limits according to legislation. This resulted in a “fair” water quality index classification according to the WQI classification. These findings highlight the importance of considering and assessing the environmental impacts. A total of 24 impacts were identified on physical, biotic, and anthropic components, with 4.76% being highly significant, 42.86% significant, and 52.38% negligible. In conclusion, the results indicate a scenario of environmental deterioration at the leachate discharge stations, urging the urgent implementation of corrective measures to address the detected high contamination.
EN
Water has recently become a final disposal site for wastewater. Land use has evolved with the global population growth and is generally transformed into settlements and industrial areas. These land use changes could potentially increase wastewater generation from both domestic and non-domestic activities. The Garang watershed, one of the watersheds in Central Java, flows through the Semarang Regency, Kendal Regency, and Semarang City. This study analyzed the water quality conditions in the Garang watershed and designed a real-time water quality monitoring system. The methods used in this study included SWMM modeling, the national sanitation foundation water quality index (NSF-WQI), and the internet of things. Samples were collected from 10 points in the Garang Watershed, with a sampling frequency of five times at each point. The results of the data analysis demonstrated that the differences in land use resulted in varying water parameter levels. The results of the SWMM modeling demonstrated an acceptable model value (NOF between 0 and 1). On the other hand, the WQI analysis results demonstrated that the quality status at the Garang watershed is "medium" at nearly all location points. The designed real-time water quality sensor tool successfully transmitted water quality data online and in real-time, particularly for temperature, pH, turbidity, and DO. This water quality monitoring system offers a variable percentage error value, with the pH sensor ranging between 0.16% and 9.86% and the temperature sensor ranging between 0.64% and 1.72%.
EN
Drinking water treatment reduces or eliminates certain health risks and ensures appropriate water quality by removing physical, chemical, and biological pollutants. The treatment process’s increased need for energy, chemicals, and technological inputs raises the expense of producing water as well as its secondary environmental effects. The goal of this research is to use the water quality index (WQI) and life cycle assessment (LCA) to determine and assess the environmental effects of the Al-Hashimiyah water treatment plant (WTP) in Babylon City, Iraq. The water quality index was employed as a criterion for categorizing and treating water in accordance with fundamental water characterization variables using a weighted arithmetic index technique. The LCA was supported by the EcoIndicator 99 database and SimaPro 7.0 software. What makes this study unusual is the identification of two extra functional units related to decontamination, beyond the usual one cubic meter treated water. Samples of treated and raw water were gathered during a 25-month period, from March 2022 to March 2023, and were regularly tested. The results demonstrated that all chemical and physical characteristics (for both raw and processed water) met Iraqi criteria, with the exception of total suspended particles and electrical conductivity. According to LCA studies, certain environmental consequences grow as pollutant concentrations drop. Due to this, a more thorough analysis of the environmental performance of water treatment facilities is now required.
EN
Groundwater quality degradation is a pressing concern in semi-arid coastal regions, exemplified by the Ghiss-Nekor aquifer in northeastern Morocco, spanning 100 km2. This study adopts a comprehensive approach, utilizing chloro-alkaline indices, hydrochemical facies diagrams, the water quality index (WQI), and the synthetic pollution index (SPI) to assess the groundwater quality and its evolution. Key findings reveal that the Ghiss-Nekor ground-water is brackish, primarily suitable for irrigation due to high total dissolved solids (TDS). Salinization stems from reverse cation exchange, as indicated by hydrochemical analyses. WQI assessments highlight the inadequacy of this groundwater for drinking purposes, with SPI classifying 54% of wells as moderately polluted. Fine particles mitigate marine intrusion in the northwest. Overlaying land-use and electrical conductivity maps identifies the areas with poor-quality groundwater, notably near an unregulated landfill, a coastal tourist site, and a wastewater treatment facility. Ionic analysis identifies multiple saline sources, with nitrate and sulfate contributions standing out. While the study offers valuable insights, limitations include the need for ongoing data collection and source identification challenges. Nonetheless, the research underscores the urgency of effective water management, particularly around the landfill site situated above permeable deposits, offering an innovative approach with global applicability for addressing groundwater quality issues in semi-arid coastal areas.
EN
Surface water samples from the area of Munzur Stream in Türkiye (a Ramsar site) were evaluated for their suitability for irrigation and drinking purposes using different water quality indices. The human health risks were assessed as well. The study was conducted over a period of 24 months from January 2019 to December 2021 by taking samples from nine stations every month in order to determine the water quality of Munzur Stream, located in Tunceli. According to the results, Munzur Stream is in good condition in terms of the quality of drinking water and irrigation water. The concentrations of heavy metals such as Cu, Ni, Fe and Hg were high, though the water quality parameter according to Türkiye Ministry of Forestry and Water Affairs Surface Water Quality Regulations (TSWQR) was significantly lower than the permitted limits. In Munzur Stream, the irrigation water for all stations was reported to be excellent, good and suitable in terms of SAR, Na% and MH, respectively. The principal component analysis data formed the four principal components, explaining 98.22% of the total variance. The sources of pollution in this area include the rock types of the basin, soil erosion, domestic waste water discharge and agricultural flow of inorganic fertilisers.
EN
Aluminium slag waste is a residue from aluminium recycling activities, classified as hazardous waste so its disposal into the environment without processing can cause environmental problems, including groundwater pollution. There are 90 illegal dumping areas for aluminium slag waste spread in the Sumobito District, Jombang Regency. This study aims to evaluate the quality of shallow groundwater surrounding aluminium slag disposal in the Sumobito District for drinking water. The methods applied an integrated water quality index (WQI) and heavy metal pollution index (HPI), multivariate analysis (principal component analysis (PCA) and hierarchical clustering analysis (HCA)), and geospatial analysis for assessing groundwater quality. The field campaign conducted 40 groundwater samples of the dug wells for measuring the groundwater level and 30 of them were analysed for the chemical contents. The results showed that some locations exceeded the quality standards for total dissolved solids (TDS), electrical conductivity (EC), and Al2+. The WQI shows that 7% of dug well samples are in poor drinking water condition, 73% are in good condition, and 20% are in excellent condition. The level of heavy metal contamination based on HPI is below the standard limit, but 13.3% of the water samples are classified as high contamination. The multivariate analysis shows that anthropogenic factors and natural sources/geogenic factors contributed to shallow groundwater quality in the study area. The geospatial map shows that the distribution of poor groundwater quality is in the northern area, following the direction of groundwater flow, and is a downstream area of aluminium slag waste contaminants.
EN
This study assessed the quality of groundwater in south of Basrah governorate from three regions (Zubair, Safwan and um-Qaser), as well as its expediency for drinking purposes and irrigation. Fifty groundwater specimens from various locations were, whereas their physical and chemical parameters were assessed. The WQI was used to measure overall water quality, and the results were displayed using GIS. The calculation of the Water Quality Index (WQI) took twelve physiochemical parameters into account, including pH, EC, TDS, TH, Ca+2, Mg+2, Na+, K+, SO4-2, Cl-, HCO3- and NO3-. The groundwater in Basrah was found to be of generally low quality, with significant levels of salinity, hardness, and TDS. The groundwater in the research region was not fit for human consumption, according to (WHO, 2011) standards for drinking water. Applying WQI revealed that, with the exception of two wells, the ground water in the research area was classed as very poor-unsuitable type. The GIS analysis assisted in identifying the places with the best water quality and those with the most serious issues. The groundwater of research region was used for irrigation purposes. The indices considered included SAR, SSP AND MH%. The groundwater from the study area is generally in good condition and may be utilized for irrigation, as shown by the estimated water indices when compared to the accepted standards.
EN
The Shatt al-Arab river is the main water source in the Basrah province, subjected to significant environmental and hydrological changes that have led to the complete degradation of its ecosystem, particularly the middle section. Nineteen water quality variables were selected to assess spatio-temporal changes in the middle section. Eight variables were chosen with the most significant impact on the Shatt al-Arab River water quality in calculating the water quality index (WQI). These variables were measured every month from December 2020 to November 2021 at five observation stations (Abu-Flous, Mhela, Baradeyea and Maqal) located on the main river and one on the Karmat Ali canal, which connects the Shatt al-Arab River with east Hammar marsh. The study was divided into two seasons of the year, the wet season (December 2020 – May 2021) and the dry season (July 2021 – November 2021), in the calculation of the WQI and its annual calculation. The results of the current study show deterioration in the values of most water quality variables, particularly those related to dissolved salts and organic and bacterial pollution. Water quality was also classified as poor on the WQI scale at all stations for the duration of the study. The results of the WQI indicated the deterioration in the quality of the water middle section, particularly during dry season. The degradation of the waters of the middle section of the Shatt al-Arab River is due to two main factors: increase salinity and organic pollution. In general, the Shatt al-Arab River and the middle section in particular, need comprehensive management, including a clear and expeditious plan to identify and address the degradation of the river’s environment, which has a great importance to all residents of the Basrah province.
EN
Water is one of the most important natural resources for all living organisms, including humans. Water consumption is increasing over the years as a result of the increase in the number of people, and at the same time, the causes of pollution of surface water sources increase. Water pollution is one of the most important causes of diseases and the transmission of infection to the organisms that use it. Also, the quality of agricultural crops is linked to the quality of the water used for irrigation. As a result, there was a need to monitor and evaluate the main water sources to maintain the quality of their water suitable for use by humans and other organisms. As is well known, it is difficult to evaluate the water quality of large samples with concentrations of many parameters using traditional methods, which depend on comparing experimentally determined parameter values with current standards. As a result, over the past century and the present, many methods of assessing water quality have emerged. This research aims to introduce the most important indices of water quality used at present to assess the quality of surface water for drinking and irrigation purposes, as well as the history of these methods and their development over time and their most important advantages, in addition to a group of the most important research that used these methods during the past few years.
EN
All kinds of life, including people, animals, plants, and other species, depend on the rich natural resources of water. However, this valuable resource is becoming increasingly threatened by the increasing population as well as the growing demand for quality water for domestic and economic purposes. Hence the requirement for ongoing river water quality monitoring and assessment. In this research, the water quality (WQ) of the Al-Abbasiyah River was assessed for drinking uses in the dry and wet seasons using the weighted arithmetic water quality index (WAWQI) and GIS software. Eighteen physical, chemical, and biological parameters were measured in 2022 (dry season) and 2023 (wet season) by collecting samples from eight locations along the river. These parameters are: Temperature, EC, pH, TDS, TSS, Turbidity, DO, BOD5, alkalinity, NO3-, HCO3-, Cl-, Mg+2, Ca+2, Na+, K+, TH, and SO4-2. The average of the measured water parameters showed that some of these parameters exceeded the standards limit of the WHO in all locations such as (Alk, TH, Ca+2, Mg+2, SO4-2) and at some locations such as (TDS, Turbidity, and HCO3-). During the dry season, the WA-WQI values varied between 70.33 in (L4) within the category of “poor” and 119.87 in (L7) within the category of “unsuitable”, while in the wet season varied between 49.71 in (L5) within the category of “good”, and 79.35 in (L2) within the category of “poor”. Thus, the water of the Al-Abbasiyah River was unfit for drinking directly and must undergo treatment before use in both seasons.
EN
This study was carried out to investigate the current status of surface water and groundwater quality in Lower Seybouse and Annaba Plain, NE Algeria. 36 surface water and groundwater samples were collected in this area, and various physicochemical parameters were analysed. The quality of surface water and groundwater for drinking and the associated health risks were assessed using a Water Quality Index (WQI) and a Human Health Risk Assessment (HHRA) model. The results show that all samples are alkaline with the EC values ranging from 1139 to 5555 μS/cm. The ionic dominance pattern was in the order of Na+ > Mg2+ > Ca2+ > K+ for cations and Cl– > HCO3 – > SO4 2 – > NO3 – for anions, respectively. The dominant water types are SO4-Cl-Ca-Mg and SO4-Cl-Na, formed by dissolution of evaporative and carbonate-rich material. All samples are unsuitable for drinking, with 1 sample classified as poor (rank = 4) and 35 samples as extremely poor (rank = 5). These samples are mainly located near the Seybouse Wadi, which is a natural outlet for wastewater from human activities. The assessment of non-carcinogenic risk showed that the Hazard Index (HI) for males ranged from 0.12 to 1.01 with a mean of 0.30 and only one sample exceeded value 1. For females, the HI was between 0.16 and 1.28 for females, with a mean of 0.39. The risk for children was even higher, ranging from 0.41 to 3.28, with a mean of 1.03, suggesting that children are more vulnerable to water contamination. The Carcinogenic Risk (CR) values for Pb ranged from 10–3 to 8.6 · 10–3, with a mean of 2.6 · 10–3 for males, and between 1.4 · 10–3 to 10–2, with a mean of 3.3 · 10–3 for females, while for children the CR values ranged from 3.5 · 10–3 to 2.7 · 10–3, with a mean of 8.4 · 10–3, indicating that no possible CR from water drinking
EN
In order to use alum in large numbers for the treatment of low turbidity water, a novel method has been used to treat low turbidity water using bentonite with a reduced amount of alum. Given that bentonite has a negative charge, it is added to the raw water to give the blocks weight. The weight is then added by joining the blocks together to create massive blocks that settle more quickly. In addition to providing a large surface for organic compound adsorption, it increases the suspension’s weight and particle density. There are between 10 and 50 mg/l of bentonite clay utilized.In the Karbala water treatment plant, the effectiveness of the water quality index (WQI) at turbidity 20NTU (national turbidity unit) using alum alone was subpar (71.16%). Under the same circumstances, the pilot plant’s WQI efficiency was equally low (72%). The turbidity of the water was increased to 120 NTUwhen bentonite was used in the pilot plant, increasing the efficiency of WQI to 97.2%. When bentonite was added to the water, the turbidity was increased to 200 NTU and the WQI efficiency was increased to 98.9%. The usage of bentonite produced a high level of WQI efficiency and a cheap substance free from infections or negative effects.
EN
The quality of groundwater and its geochemical features as a source of drinking water are under investigation in the current research. The physical characteristics, cation, and anion chemistry of 201 samples of groundwater were determined. The investigation was conducted in the Southern Indian province of Tamil Nadu, specifically, the Karur District, which is situated between 10°30′ – 11°00′ North latitude and 77°45′ – 78°30′ East longitude, and covers an area of approximately 2900.63 km2. Safe drinking water standards established by the WHO were used for comparison. The majority of samples on the Gibbs plot are inside the rock dominance zone, showing that the chemical of the rock interacts with the groundwater to affect the chemistry of the groundwater. The study region’s Piper plots reveal that most of the samples contain CaCl or CaMgCl. The WQI results for almost all samples were either "excellent" or "good", suggesting they are suitable for human consumption.
EN
In Algeria, groundwater frequently serves as a main source of drinking water supply. Given the country’s geographical characteristics and water resource availability, many municipalities rely on groundwater to meet their drinking water needs.In this study, the quality of groundwater for drinking purposes in the northern region of the Middle Sébaou was assessed by obtaining hydrochemical data from ten groundwater samples in 2019. The study aimed to analyze and evaluate the hydrochemical composition of the groundwater using multivariate analysis and the water quality index (WQI) to determine its suitability for human consumption. Statistics showed that most of the groundwater analysis parameters are within acceptable limits except calcium (Ca2+) and bicarbonates (HCO3−) which exceed the potability standards set by the guidelines of the World Health Organization (WHO) for drinking water. Piper diagram demonstrates the existence of two hydrochemical facies: bicarbonate calcium and magnesium, and chloride as well as sulfate calcium and magnesium. According to the WQI values obtained in this study, ranging from 53.32 to 71.18, all of the groundwater samples exhibit good water quality based on the classification of the WQI method. On the basis of these results, the groundwater of the northern region of the Middle Sébaou is suitable for drinking purposes.
EN
The goal of the current study is to use the Canadian Water Mechanism Manual to assess the water quality at five stations along the Shatt Al-Hilla river in the Iraqi province of Babylon. The current research demonstrates how the Shatt Al-Hilla River and five other locations in Babel City, Iraq, were evaluated using the Water Quality Index developed by the Canadian Council of Ministers of the Environment (CCME WQI). The fieldwork was finished in April 2019, between November 2018, and this month. The CCME WQI was built using thirteen factors for measuring water quality (chromium, chemical oxygen demand, lead, biological oxygen demand, dissolved oxygen, turbidity, sulphate, nitrite, nitrate, total hardness, total dissolved solids, pH magnitude and water temperature). The average magnitudes for five stations along the CCME WQI for the Shatt Al-Hilla River ranged from 61.94 to 81.93 depending on the index’s findings. It was also noted that there is a variation in the studied physical and chemical properties of the samples taken from the five stations distributed along the Shatt al-Hilla River. These data show that the water quality for drinking purposes may be assessed as marginal in all sites, with the exception of station 1, where the water quality index was evaluated as good. In order to prevent pollution, conserve water, and achieve proper management, this study article underlines the need for substantial action to control river water quality.
EN
As a result of poor human activities, storm water is now contaminated, notably in the Middle East. The filtering process is a physical separation with no chemical reactions occurring throughout the operation. The goal of this research is to use three distinct types of filters to improve the quality of storm water: sand, sand with granular activated carbon (GAC), and sand with cotton. Before and after treatment, the pH, turbidity, electric conductivity, TDS, and temperature of storm water are all monitored. In addition, the water quality index (WQI) was computed. The parameters of treated storm water varied depending on the filter media used, such as sand (turbidity = 83 NTU, TDS = 585 mg/L, conductivity = 1190 S/cm, pH = 7.1 and temperature =17.8 °C), sand with GAC (turbidity = 12NTU, TDS = 540 mg/L, conductivity = 910 S/cm, pH = 7 and temperature =18 °C) and sand with cotton (turbidity = 6.4 NTU, TDS = 490 mg/L, conductivity = 1090 μS/cm, pH = 7.2 and temperature =17.6 °C). Sand has a treatment efficiency of 63.6 percent, sand with GAC has an efficiency of 84.9 percent, and sand with cotton has an efficiency of 84.2 percent at a flow rate of 0.66 L/min, when WQI is clean. With GAC, it is clear that the dual media filter is the finest special sand.
EN
This study evaluated the suitability of groundwater from primary basins in the Tafilalet area of southeast Morocco for drinking purposes. Water samples were collected from 100 wells, and physicochemical parameters, including temperature, conductivity, pH, hardness, and organic and inorganic ion concentrations, were analyzed. The weighted arithmetic water quality index (WQI) was used as an ecological indicator for quality evaluation in relation to Moroccan drinking water criteria. Ten locations were chosen for monthly inspection based on their proximity to the potential sources of pollution. The study found a considerable improvement in water quality over a 15-year period (2004–2019), with three sites classified as “Good quality” and seven as “Poor Water”. The analysis revealed that the pH values of all groundwater samples were within the acceptable range according to the World Health Organization (WHO) standards. The chloride ion concentrations decreased significantly over time, while the nitrate and sulfate concentrations increased. The hydrometric title of groundwater was very high in all study sites, with a significant proportion of alkaline earth metals present. The study suggests that the development of the sewerage network and supply and distribution of drinking water in the region has led to improved water quality. The study demonstrated changes in the physicochemical properties of groundwater in the Tafilalet region of Morocco over a 15-year period, with an overall improvement in water quality.
EN
Groundwater salinity is a serious problem for water quality in the irrigated parts of arid and semi-arid regions, especially in the aquifers of Berrechid, Morocco. This study used a variety of techniques, including the Water Quality Index (WQI) and World Health Organization (WHO) recommended limits, Principal Component Analysis (PCA), and Geographic Information System (GIS) to evaluate the quality of the groundwater for irrigation and domestic use in the Berrechid region in central Morocco. The goal of this study was to evaluate the quality of groundwater for irrigation and human consumption. The collection and analysis of twenty-two samples for ions was carried out, including, EC, Cl-, NO3-, NH4+, NO2-, Ca2+, Mg2+, pH, SO42-, Na+, K+, CO3-, HCO3-, and Mn2+. The Water Quality Index (WQI) was used to classify the water quality vis: excellent, good, average, poor and very poor. The research area’s water quality index (WQI) ranges from 43.89 to 439.34, with around 40.90% of samples having excellent water quality, 45.45% having poor water quality, 4.54% showing extremely bad water quality, and 9.09% having unsuitable quality for human consumption. The principal component analysis reveals that the average concentration of cations in groundwater was Na+> Mg2+> Ca2+> K+> Mn2+> NH4+, whereas the concentration of anions was Cl-> HCO3-> SO42-> NO3-> NO2-> CO32-. The correlation matrix was created and analyzed to determine its significance in groundwater quality assessment. The primary sources of pollution are household waste, exposed septic tanks, landfill leachate, and excessive fertilizer usage in agriculture and industrial operations. The current analysis demonstrates that the deteriorating groundwater quality in the region needs pre-consumption treatment and contamination risk prevention.
EN
Groundwater is essential for sustainable development and drinking water supply in the Saharan regions. This work aims to assess the quality of water for domestic use and the hydrogeochemical characteristics of the phreatic aquifer of the Ouargla. Forty-two (42) wells capturing the phreatic aquifer are sampled and analyzed. The parameters analyzed are pH, EC, TDS, cations and anions. The water’s potability was evaluated using the Water Quality Index (WQI) method, using the main physicochemical parameters that have potential adverse effects on human health. The results obtained show three classes: the poor class (14.29%), the very poor class (19.04%), and the non-potable class (66.67%). The analysis of the Piper and the Gibbs diagrams, the Pearson correlation matrix and the diagrams of relationship between the major elements, as well as the indices of saturation of the main minerals, shows that the groundwater samples were arranged into two groups; Ca-Mg-SO4 -Cl (38.5%) and Na-Cl (61.5%), the geochemical processes occurring in the aquifer mainly include the dissolution of halite, gypsum, the cation exchange between water and clay minerals and anthropogenic inputs.
EN
Water scarcity remains the main problem in Morocco, making water resource conservation paramount. The objective of this study is to shed light on how mining impacts the region of Beni Tajjit’s groundwater resources, which are used for irrigation and watering, which includes the Bou Dhar mining district, known for its vast lead and zinc sulfide deposits. The oxidation of sulfide-rich mine tailings generates acid water loaded with sulfates, creating acid mine drainage (AMD), which hurts aquatic ecosystems and the environment through trace metals elements (TME). Hence the need to assess the possible contamination of aquifers by metallic pollutants. This work can help water managers make appropriate decisions for controlling the quality of the groundwater in the Beni Tajjit area. During this study, we adopted a method: the Water Quality Index (WQI), designed to indicate the overall level of water quality by aggregating various weighted measurements. Five samples representing water sources around the mine tailings were taken and analyzed. Their values of dissolved oxygen, electrical conductivity and pH were measured on-site. The results allow us to classify the water into good and bad categories. They showed that the TME values were practically lower than the maximum permitted level according to WHO norms and Moroccan irrigation standards. The main reason for this may be due to the carbonate geological context of the site, which buffers acidity and thus forms a chemical barrier against the transfer of TME to the aquifer. The high chlorine levels appear due to geochemical background or anthropogenies contaminations. The sulfate values recorded are related to the leaching of sulfide minerals from mine tailings.
first rewind previous Strona / 3 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.