Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 4

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  water hyacinth
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Water hyacinth (WH) biomass is one of the popular materials in the Vietnamese Mekong Delta, a potential substrate for biogas production. The effectiveness of utilizing WH for producing biogas under anaerobic digestion was demonstrated in the previous studies, but the research was focused on the loading rate of about 1.0% volatile solid (VS). Therefore, in the present study, a semi-continuous anaerobic digestion experiment was conducted with the five levels of VS, including 1.0%VS, 1.5%VS, 2.0%VS, 2.5%VS, and 3.0%VS, to examine how loaded VS can affect biogas production. Each treatment was designed with three replications over 60 days. The measured parameters included pH, temperature (Temp; °C), redox potential (Eh; mV), daily produced biogas volume (L), cumulative biogas volume (L), and methane (CH4) concentration (%) during the 60 days of the experiment. The obtained results showed that pH, tempt, and Eh parameters did not negatively affect biogas production. However, the volume of daily biogas in the treatment of 3.0%VS was higher than in other treatments. In addition, the cumulative biogas volume in the treatment of 3.0%VS was the highest and significantly different between all reactors (p<0.05). Meanwhile, the treatment of 1.0%VS was known with the lowest values. The study explored that the volume of biogas could be increased when the organic loading rate VS is increased.
EN
Using water hyacinth as a phytoremediation agent produces abundant biomass due to periodic harvesting in the system. One of the alternative uses of water hyacinth biomass can be a bio-sorbent to absorb metal contamination in the waters. This study aims to determine the quality of activated water hyacinth bio-sorbent, potentially reducing metal cadmium (Cd). The research was conducted from January to April 2022. The results showed that the parameters of water content, iodine absorption, and methylene blue in water hyacinth bio-sorbent had met the quality standard of activated carbon based on SNI No. 06-3730-1995. In contrast, the ash content still did not. In water, hyacinth stem bio-sorbents (stems + ZnCl2 and stems 300 °C + ZnCl2) obtained higher ash content (25.87 and 73.30%) than the ash content of water hyacinth root and leaf bio-sorbent with the same activation treatment. The optimum adsorption capacity (Qe) for the roots + ZnCl2 occurred at a contact time of 45 minutes which was 8.13 mg/g with an absorption efficiency (Ef) of 34.20%. For the root 300 °C + ZnCl2, the optimum adsorption capacity and absorption efficiency occurred at a contact time of 8 hours, namely 9.08 mg/g and 38.66%, respectively. The optimum adsorption capacity and absorption efficiency of the leaves + ZnCl2 occurred at a contact time of 4 hours, namely 7.63 mg/g and 32.12%, respectively. Meanwhile, at the leaves 300 °C + ZnCl2, the optimum adsorption capacity and absorption efficiency occurred at a contact time of 8 hours with a value of Qe = 11.84 mg/g and Ef = 49.35%.
EN
Wastewater contamination which causes health, environmental and economic impacts is one of the most common environmental issues. Several methods have been used for the upgrade of the existing wastewater treatment facilities, nevertheless, the application of phytoremediation treatment is a promising and environmentally friendly method to avoid the secondary contaminations posed by the treatment dosage in other advanced treatment methods. The current work aimed to assess the phytoremediation treatment of the pre-treated domestic wastewater using the Salvinia molesta and water hyacinth plants. The water quality tests were performed in the current research to evaluate the effects of the phytoremediation treatment using the Salvinia molesta and water hyacinth plants on the responses of the water quality parameters. The study focused on varying two main parameters, namely the pH and the hydraulic retention time (HRT), while the removal rate was determined based on the reduction in the chemical oxygen demand (COD), total dissolved solids (TDS), total nitrogen (TN) and turbidity. The optimal removal of COD, TDS, TN and turbidity in the current study was 56.47, 83.00, 52.12, and 79.98% for Salvinia molesta as well as 48.81, 24.00, 13.56 and 19.89% for water hyacinth.
EN
The present study focused on the phytoremediation efficiency of water hyacinth for the batik effluent treatment. Three operating factors were investigated such as retention times (0 to 28 days), batik effluent strength (20, 30 and 60%), and number of water hyacinth clumps (8, 10 and 12 clumps). The water hyacinth efficiencies was monitored through the measurement of dry weight, color, chemical oxygen demand (COD), total suspended solid (TSS), and pH. The highest efficiency of color and COD in the batik effluent treatment were achieved at day 7 with 83% (61 mg/L) and 89% (147 ADMI) removals, respectively. Both wastewater parameters were removed to below the Standard A for COD and Standard B for color. Meanwhile for TSS, the removal decreased as the batik effluent strength increased, where the highest removal (92%) was achieved at day 28 with 8 number of plant clumps. The pH was observed in range of 6 to 7. The results indicated that water hyacinth would be the best option for the low cost batik effluent treatment.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.