Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 4

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  waste cooking oils
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The purpose of this study is to experimentally investigate the performance of compression ignition engine using a biodiesel extracted from waste cooking oils (WCO), such as, falafel frying palm oil, chicken frying soybean oil, and fresh oils, such as soybean and olive oils. After producing biodiesel from WCO and fresh oils, the mixtures were blended with pure diesel in two percentages as follows: B20 (20% biodiesel from each type, 80% pure diesel) and B10 (10% biodiesel from each type, 90% pure diesel). The biodiesel blends were used as an alternative fuel for diesel engine. The ignition performance of the fuel blends was compared with that of pure diesel B00 (0% biodiesel, 100%pure diesel). To analyze the effect of biodiesel on engine performance, the engine was operated at variable load from 0 to 6 kW and constant speed at 2000 RPM. For engine performance, brake power, brake specific fuel consumption and brake thermal efficiency were analyzed. The results showed that pure diesel produces higher brake force (BP) than all biodiesel blends. The highest value for brake specific fuel consumption (BSFC) at variable load is for B20-F (20% biodiesel from falafel frying oil, 80% pure diesel) is equal to 0.243426 gm/kW.s. The highest value for brake thermal efficiency (BTE) is for B10-S (10% biodiesel from soybeans oil, 90% pure diesel) is equal to 27.6%.
EN
The second-generation liquid biofuels are fuels derived from non-food raw materials, i.e. waste cooking oils and animal fats. They are waste raw materials from the agri-food industry, hence their quantity is limited, and their quality depends, inter alia, on the place of their acquisition. Considering the fact that rheological properties of liquid biofuels are closely correlated with the quality of raw materials from which they are obtained, the industrial production of biofuels from waste fats requires development of new analytical methods, allowing for a quick assessment of the quality of the obtained products. The aim of the study was to confirm the possibility of using near infrared spectrometry to assess the content of methyl palmitate in biofuels produced from waste cooking oil. The calibration models were based on 41 absorbance spectra recorded in the range of 400-2170 nm for samples containing from 0 to 5 % of methyl palmitate. The obtained results confirmed that there is a possibility of effective detection of the concentration of this ester in biofuel using the spectrum in the range of 1644-1778 nm. The developed PLS calibration models are characterized by a determination coefficient (R2 ) exceeding the value of 0.99.
PL
Biopaliwa ciekłe II generacji są paliwami otrzymywanymi z surowców niespożywczych tj. olejów posmażalniczych oraz tłuszczów zwierzęcych. Są to surowce odpadowe, pochodzące z przemysłu rolno-spożywczego, w związku z czym ich ilość jest ograniczona, a jakość uzależniona m. in. od miejsca pozyskania. Biorąc pod uwagę fakt, że właściwości reologiczne otrzymywanych biopaliw ciekłych ściśle korespondują z jakością surowców z jakich są otrzymywane, przemysłowa produkcja biopaliw z tłuszczów odpadowych wymaga opracowania nowych metod analitycznych, pozwalających na szybką ocenę jakości uzyskiwanych produktów. Celem badań było potwierdzenie możliwości zastosowania spektrometrii bliskiej podczerwienią do oceny zawartości palmitynianu metylu w biopaliwach produkowanych z tłuszczy posmażalniczych. Bazę do budowy modeli kalibracyjnych stanowiło 41 widm absorbancji zarejestrowanych w zakresie 400-2170 nm dla próbek zawierających od 0 do 5 % palmitynianu metylu. Uzyskane wyniki potwierdziły, że istnieją możliwości skutecznej detekcji stężeń tego estru w biopaliwie za pomocą widma z przedziału 1644-1778 nm, a opracowane modele kalibracyjne PLS charakteryzują się współczynnikiem determinacji przekraczającym 0,99.
EN
Purpose: Biodiesel, mixture of fatty acid methyl esters is a biodegradable alternative fuel that is obtained from renewable sources as a vegetable oils or animal fats. Use of waste cooking oils reduce the cost of raw materials for biodiesel production and also reduces the environment pollution. Moreover, pure edible vegetable oils for biodiesel production have an ethical significance because food is used to produce fuel. The aim of this work is a presentation of effects that residual glycerides have on kinematic viscosity values of biodiesels produced from the various waste cooking oils with crude rapeseed oil blends. Kinematic viscosity is one of the most important property of biodiesel and it directly depend on raw material composition. Design/methodology/approach: This article includes analysis and estimation of the effect that residual mono-, di- and triglycerides which remain in the biodiesels after transesterification processes have on their kinematic viscosities. Results obtained for biodiesel produced from various percentages of waste cooking oils and crude rapeseed oil blends were presented. Findings: Investigation during biodiesels production showed that the biggest impact on biodiesel kinematic viscosity have monoglycerides, diglycerides, and then at the end triglycerides. From these follows that kinematic viscosity of biodiesel is not a function only of the conversion (transesterification process) but also of the residual incompletely reacted glycerides which amount depend of the waste cooking oils percentage in raw material blends used for biodiesels production. Research limitations/implications: These presented results are the closed solution considering the used raw materials. Quality and chemical composition of the used waste cooking oils are quite different from each other, which affects the quality of the produced biodiesels. Because of that these results should be an indicator for the further testing and improvements to achieve optimization of transesterification process which can reduce the amount of the residual glycerides in the biodiesel. Practical implications: The results presented in the paper can be applied in the industry for estimation and selection of the optimal percentages of waste cooking oils and crude rapeseed oil blends for the biodiesel production. Originality/value: This paper presents research of the influence of residual glycerides on kinematic viscosity of biodiesels produced from the various waste cooking oils and crude rapeseed oil blends. Application of these research can leads to the better kinematic viscosity value of produced biodiesel with optimization of the transesterification process.
EN
Purpose: The aim of this article is to present problems in the production of energy from the renewable resources as is a biodiesel production. The use of human foods that are pure edible oils for biodiesel production is big ethical problem. This problem can be reduced with use of waste cooking oils for the biodiesel production. Besides this use of the waste cooking oils will reduce the raw material cost and also reduce the environment pollution that is a global problem. Design/methodology/approach: This article includes analysis and estimation of the methyl esters impact to the kinematic viscosity of biodiesels produced from various percentages of waste cooking oils and crude rapeseed oil blends. One of the most important physical properties of biodiesel that affect its use value is kinematic viscosity properties which are directly dependent on the composition of raw materials. After the transesterification process mono-alkyl esters (biodiesel), glycerol (main co-product), alcohol, catalyst, free fatty acids, residual glycerides compose the final mixture of biodiesel production process. Some important issues on the biodiesel quality control involve the monitoring of transesterification process with the quantification of mono-alkyl esters. Findings: With an increase of methyl esters content the kinematic viscosity of produced biodiesels decreases for both waste cooking oils WCO1 and WCO2, used for biodiesel production in various blends with crude rapeseed oil. Practical implications: The results presented in the paper can be applied in the industry for estimation and selection of the optimal percentages of waste cooking oils and crude rapeseed oil blends for the biodiesel production. Originality/value: This paper presents research of the influence of methyl esters on kinematic viscosity of biodiesels produced from the various blends of waste cooking oils and crude rapeseed oil. The further testing and improvements in waste oils purification and in transesterification process can lead to the better yield in biodiesel production.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.