Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 4

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  warunki wiatrowe
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
PL
W artykule przedstawiono problemy oraz wyzwania stojące na drodze do wielopłaszczyznowego rozwoju energetyki wiatrowej. Omówiono występujące globalnie zasoby wiatru oraz możliwości energetyczne poszczególnych rejonów Polski. Przedstawiono dotychczasowy rozwój siłowni wiatrowych, a także potencjalne ścieżki ich dalszej rozbudowy. Omówiono przykłady dużych instalacji wiatrowych oraz problemy, z jakimi zmagają się ich operatorzy.
EN
Wind energy is one of the most abundant energy sources on Earth. In recent decades the most of technological problems of wind farms were resolved, unfortunately the main problem lies instability and predictability of wind conditions remain. Obstacles in the construction of wind farms are also impact on the environment and requirements for the accompanying infrastructure.
EN
The following paper covers a method for wind turbine selection with a horizontal axis of rotation basing on real in-field measurements of wind conditions. The basic meteorological properties and characteristics obtained during measurement campaigns using necessary equipment as well as the used methodology are vital for successful investment in wind farm. The main goal of in-field investigation is to collect meteorological data using a measurement mast installed at the possible future wind farm location. The conducted measurement campaign provided wind directions, velocities and wind blast parameters. The measurements were conducted in the northern Poland using measuring system installed on 100 meter high mast. The system was equipped with all devices necessary to measure and record the basic wind parameters. The reliability of measurements was verified using statistical data for the Weitbull distribution and the wind rose. In this way, the energy potential of raw air stream that could possibly drive a wind turbine was determined. Among 6 pre-selected wind turbine types, the optimal one for a given location was proposed.
EN
The following paper presents a methodology of wind turbines selection with a axis of rotation based on measurements of wind conditions specific for the wind power sector. Basic properties and characteristics used in the wind power sector, as well as a proper measurement campaign along with determining the necessary instrumentation and the methodology of its use, are the basic parameters that determine the decision of wind farm investment. The main goal of those activities is to gather the accurate meteorological data in sufficient amount using a measurement tower situated at a possible future location of a wind farm. This method is used to identify the direction, speed, gust and energy of the wind. Measurements were made in northern Poland using a measurement system based on a 80-meter-high telescopic mast. The system was equipped with instrumentation necessary to measure and record the basic wind parameters, and was made by the Windhunter Serwis Ltd. Company headquartered in Koszalin. The reliability of measurements was verified using the statistical methods based on the Weitbull’s distribution and the windrose. Thus, the energy potential of the raw air stream was determined with a possible future use in a wind farm sitting.
EN
Wind constitutes one of the major environmental factors affecting the design and performance of built environment. Each country has its unique climatic wind conditions, and the way in which these are considered and implemented in the structural design, is important. An implementation or adoption of any new engineering design stipulations introduces a formidable challenge to the developers of the standards and the design profession. This has been experienced in some of the countries (e.g. the UK, Australia and the USA), where processes of modernising the outdated codification took place in the past. Although both Poland and South Africa are currently at the early implementation stage of the new wind loading design stipulations, there is a major difference between the circumstances of the two countries. Poland, as an EU member state, has a compulsory obligation to adopt the new uniform standarisation requirements, within a stipulated time-frame. The South African code developers, after a thorough investigation process which will be highlighted in the paper, decided voluntarily to adopt the Eurocode as the primary model document.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.