Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 6

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  wartości normatywne
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available n-Heksanal
PL
n-Heksanal jest bezbarwną cieczą o silnym i charakterystycznym zapachu przypominającym zapach owoców lub świeżej trawy. Narażenie zawodowe na n-heksanal występuje: w przemyśle gumowym, przy produkcji barwników, syntetycznych żywic, insektycydów oraz w przetwórstwie tworzyw sztucznych. n-Heksanal w organizmie człowieka i zwierząt może być związkiem zarówno egzogennym, jak i endogennym, gdyż powstaje jako jeden z produktów peroksydacji lipidów (ω-6-niena-syconych kwasów tłuszczowych). Jako związek egzogenny jest również pobierany z wodą do picia i z pożywieniem (znaleziono go w: mięsie, rybach, mleku, nasionach soi i innych produktach spożywczych). n-Heksanal w warunkach zawodowych wchłania się do organizmu przez drogi oddechowe i skórę. Jest związkiem działającym drażniąco na błony śluzowe oczu i górnych dróg oddechowych. Wyznaczona w doświadczeniu na myszach Swiss-Webster wartość RD50 n-heksanalu wyniosła 4290 mg/m3. Związek o stężeniu 1000 mg/l podawany zwierzętom doświadczalnym z wodą do picia powodował zmiany histopatologiczne w wątrobie i nerkach. Biorąc pod uwagę wartość LD50 dla szczura przy podaniu dożołądkowym, którą wyznaczono na poziomie 4890 mg/kg m.c., n-heksanal nie jest zaliczany do substancji niebezpiecznych. n-Heksanal nie wykazywał działania mutagennego w testach z Salmonella typhimurium i Escherichia coli. Nie stwierdzono też działania rakotwórczego n-heksanalu. Podstawą proponowanej wartości NDS n-heksanalu jest działanie drażniące związku. Wartość najwyższego dopuszczalnego stężenia (NDS) na poziomie 40 mg/m3 została zaproponowana jako 0,01 RD50 wyznaczonej w doświadczeniu na myszach Swiss-Webster. Ponieważ opisywano przypadki podrażnienia błon śluzowych oczu u człowieka po krótkotrwałym narażeniu na n-heksa-nal o stężeniu 100 mg/m3 za wartość najwyższego dopuszczalnego stężenia chwilowego (NDSCh) n-heksanalu zaproponowano przyjęcie stężenia 80 mg/m3. Proponuje się także oznakowanie normatywu literą „I” – substancja o działaniu drażniącym. Nie znaleziono podstaw do ustalenia wartości dopuszczalnego stężenia w materiale biologicznym (DSB) n-heksanalu.
EN
n-Hexanal (CAS No 66-25-1) is a liquid with a characteristic odour. This substance is used in rubber industry, pigment manufacturing, synthetic resins, insecticides and plastics processing. n-Hexanal is absorbed through the skin but inhalation is the main way of occupational exposure to n-hexanal. n-Hexanal is irritating to the eyes, skin and upper respiratory tract. In animals n-hexanal is characterized by low acute toxicity: the LD50 value is 4890 mg/kg body weight for rats orally exposed. n-Hexanal did not display mutagenic effects in Salmonella typhimurium and Escherichia coli. There was no evidence of carcinogenic, fetotoxic and teratogenic effects. The recommended 8-hour TWA was 40 mg/m3 as a 0.01 RD50 obtained in an experiment on Swiss-Webster mice and the MAC-STEL of 80 mg/m3 were recommended to prevent exposure to irritating levels. Notation “I” is recommended. There are no data supporting a BEI value.
2
Content available 1,3-Etylenotiomocznik
PL
1,3-Etylenotiomocznik (ETU) jest stosowany głównie w przemyśle chemicznym, przede wszystkim jako tzw. przyspieszacz w procesach utwardzania neoprenu, kauczuku poliakrylowego i elastomerów, a także w galwanizerniach i odlewnictwie. Jest też produktem pośrednim w produkcji barwników, leków, żywic syntetycznych, a także pestycydów, głównie insektycydów i fungicydów dikarbaminianowych. Narażenie zawodowe na 1,3-etylenotiomocznik dotyczy przede wszystkim osób zatrudnionych w przemyśle chemicznym, metalurgicznym oraz przy stosowaniu tego związku podczas zabiegów agrochemicznych. W warunkach narażenia zawodowego 1,3-etylenotiomocznik może wchłaniać się do organizmu na drodze inhalacyjnej, pokarmowej i przez skórę. W dostępnym piśmiennictwie nie ma doniesień na temat szkodliwego działania 1,3-etylenotiomocznika na ludzi. Niewiele jest również danych dotyczących objawów ostrej toksyczności związku u zwierząt doświadczalnych. Wartości LD50 związku po podaniu per os szczurom ustalono na poziomie 265 ÷ 1832 mg/kg m.c., co pozwala na zaklasyfikowanie 1,3-etylenotiomocznika jako związku szkodliwego po połknięciu. Długookresowe narażenie zwierząt doświadczalnych na 1,3-etylenotiomocznik powodowało uszkodzenie funkcji tarczycy i wątroby. Większość danych pochodziła z eksperymentów, w których związek podawano zwierzętom z paszą. 1,3-Etylenotiomocznik nie wykazywał działania genotoksycznego w odpowiednich testach na bakteriach, komórkach ssaków w warunkach in vitro oraz u myszy i szczurów w warunkach in vivo. Działanie rakotwórcze 1,3-etylenotiomocznika było oceniane przez grupę roboczą IARC na podstawie wyników eksperymentów, w których związek podawano zwierzętom z paszą w dwóch badaniach przeprowadzonych na trzech szczepach myszy łącznie z narażeniem okołoporodowym oraz na podstawie pięciu badań na szczurach, również z narażeniem okołoporodowym. U myszy związek powodował nowotwory komórek pęcherzykowych tarczycy, nowotwory wątroby i przysadki mózgowej. U szczurów stwierdzono gruczolaki i raki komórek pęcherzykowych tarczycy. 1,3-Etylenotiomocznik nie powodował zmian nowotworowych u chomików. Eksperci IARC w 2001 r. zaliczyli 1,3-etylenotiomocznik, na podstawie istniejących danych toksykologicznych, do grupy 3., ponieważ nie znaleziono wystarczających dowodów rakotwórczego działania związku na ludzi i zwierzęta doświadczalne. Nowotwory wykryte u zwierząt doświadczalnych powstają bowiem na drodze niegenotoksycznego mechanizmu i wynikają z działania zaburzającego homeostazę hormonów tarczycy przez selektywne hamowanie peroksydazy tarczycowej (TPO) przez 1,3-etylenotiomocznik. Dlatego też jest mało prawdopodobne występowanie nowotworów tarczycy u ludzi narażanych na 1,3-etylenotiomocznik o stężeniach niezakłócających homeostazy hormonów tarczycy. Dodatkowo na podstawie wyników badań na zwierzętach stwierdzono, że gryzonie są bardziej wrażliwe na powstawanie nowotworów tarczycy niż ludzie. W badaniach na szczurach 1,3-etylenotiomocznik wykazywał działanie embriotoksyczne i teratogenne. Dawkę 5 mg/kg m.c./dzień 1,3-etylenotiomocznika można przyjąć za dawkę, która nie spowoduje wystąpienia wad rozwojowych u płodów szczurów (wartość NOEL). 1,3-Etylenotiomocznik ulega szybkiemu wchłanianiu z przewodu pokarmowego zwierząt doświadczalnych. U ssaków jest metabolizowany do etylenodiaminy, etylenomocznika, ditlenku węgla i kwasu szczawiowego lub do pochodnych imidazolowych. U ludzi 1,3-etylenotiomocznik jest wydalany w postaci niezmienionej. Mechanizm toksycznego działania 1,3-etylenotiomocznika na tarczycę polega na hamowaniu aktywności peroksydazy tarczycowej (TPO), enzymu katalizującego syntezę hormonów tarczycy – trójjodotyroniny (T3) i tyroksyny (T4). Zmniejszenie stężenia hormonów tarczycy, zwłaszcza T4 we krwi, stanowi sygnał dla przysadki powodujący wzmożone wytwarzanie TSH – hormonu stymulującego pracę tarczycy, w celu pobudzenia jej do produkcji T4. Stałe pobudzanie tarczycy powoduje proliferację komórek pęcherzykowych tarczycy i prowadzi do procesu nowotworowego. Szkodliwe działanie 1,3-etylenotiomocznika może być także związane z jednoczesnym narażeniem na azotyny. Proponowaną wartość najwyższego dopuszczalnego stężenia (NDS) 1,3-etylenotiomoczniaka równą 0,1 mg/m3 wyliczono na podstawie wyników 10-letnich badań u ludzi narażonych na średnie stężenia 1,3-etylenotiomocznika w powietrzu stanowisk pracy wynoszące około 0,2 mg/m3, u których stwierdzono jedynie zmniejszenie stężenia T4, przy braku zmian stężeń TSH i tyreoglobuliny. Stężenie 0,2 mg/m3 1,3-etylenotiomoczniaka uznano za wartość NOAEL, którą do wyliczenia wartości NDS podzielono przez współczynnik niepewności, uwzględniając różnice wrażliwości osobniczej ludzi. Nie ma podstaw do ustalenia wartości najwyższego dopuszczalnego stężenia chwilowego (NDSCh) 1,3-etylenotiomocznika. Nie ma też podstaw do ustalania wartości dopuszczalnego stężenia w materiale biologicznym (DSB) związku. Uwzględniając wyniki badań działania teratogennego 1,3-etylenotiomoczniaka u zwierząt doświadczalnych, proponuje się także oznakowanie związku literami „Ft” oznaczającymi substancję działającą toksycznie na płód.
EN
1,3-Ethylenethiourea (ETU) is used primarily as an accelerator for vulcanising polychloroprene and polyacrylate rubbers. Occupational exposure to 1,3-ethylenethiourea occurs also in the chemical industry where it is used as an intermediate in dyes, synthetic resins and pharmaceuticals synthesis. It is also a metabolic degradation product and an impurity in ethylenebisdithiocarbamate fungicides, and field workers may be exposed to 1,3-ethylenethiourea while applying these fungicides. The primary routes of potential human exposure to 1,3-ethylenethiourea are inhalation, ingestion and dermal contact. The principal toxic effects of 1,3-ethylenethiourea in humans involve the thyroid gland. 1,3-Ethylenethiourea is a harmful substance in laboratory animals in acute toxicity testing. In chronic toxicity it exerts harmful action on thyroid glands and the liver. 1,3-Ethylenethiourea did not show genotoxicity in many experimental studies. In carcinogenicity testing this compound induced thyroid follicular cell carcinoma in rats of both sexes, and thyroid follicular cell neoplasms, hepatocellular neoplasms, and adenomas of the parts distalis of the pituitary gland in both sexes of mice. There are no data on carcinogenicity in humans. 1,3-Ethylenethiourea exerts embryotoxic, fetotoxic and teratogenic effects in animals.
3
Content available Glin metaliczny
PL
Glin (Al) jest srebrzystobiałym metalem o masie atomowej 26,98 i temperaturze topnienia 660,4 C. Zawartość glinu w skorupie ziemskiej wynosi około 8%. Produkcja glinu polega na elektrolizie tritlenku glinu (Al2O3) zmieszanego z topnikami. Aluminium znajduje zastosowanie do wyrobu naczyń powszechnego użytku i aparatury chemicznej. Jest wykorzystywany przy produkcji samochodów, samolotów, w metalurgii, do pokrywania zwierciadeł teleskopów, papierów dekoracyjnych i opakowań. Sproszkowany metal stosuje się w laboratoriach jako czynnik redukujący, przy produkcji materiałów wybuchowych, pigmentów, proszków błyskowych i farb oraz przy spawaniu części stalowych metodą Goldschmidta. Narażenie zawodowe w przemyśle wiąże się z produkcją glinu, technologiami spawania oraz produkcją finalnych wyrobów z glinu. Nie ma danych dotyczących toksyczności ostrej u ludzi. Natomiast przewlekłe narażenie zawodowe ludzi na pyły glinu prowadzi do wystąpienia w płucach zmian o charakterze pylicy płuc. Obserwowano także następujące zmiany: zwłóknienia w płucach, zapalenie pęcherzyków płucnych, proteinozę pęcherzyków płucnych, zapalenia oskrzeli i przewlekłe śródmiąższowe zapalenie płuc. W kilku badaniach populacji pracowników narażonych zawodowo na pyły glinu wykazano wzrost liczby przypadków występowania zmian zwłóknieniowych w płucach, zależnie od stężenia frakcji respirabilnej pyłów w powietrzu. Działanie zwłókniające pyłów glinu wykazano również w kilku eksperymentach przeprowadzonych na zwierzętach doświadczalnych. W kilku pracach podjęto próbę oceny zaburzeń ze strony układu nerwowego u pracowników narażonych na dymy i pyły glinu. Nie ma jednak wystarczających dowodów takiego działania, gdyż w żadnym z tych badań nie stwierdzono objawów ogniskowych organicznego uszkodzenia ośrodkowego i obwodowego układu nerwowego. Glin nie wykazuje działania mutagennego, genotoksycznego ani rakotwórczego. Nie działa również embriotoksycznie i teratogennie. Ze względu na fakt, że narażenie zawodowe na pyły glinu jest narażeniem złożonym, w którym występują również inne związki pylicotwórcze, wydaje się, że wyliczona wartość normatywu higienicznego powinna obejmować stężenie glinu zarówno frakcji respirabilnej pyłu jak i pyłu całkowitego. Za podstawę wyliczenia wartości NDS przyjęto badania, w których wykazano, że u badanych 53 pracowników narażonych na pyły glinu o stężeniu 1,4÷10 mg/m3 frakcji respirabilnej wykryto 1 przypadek zwłóknienia płuc i 3 przypadki z niewielkimi zmianami w płucach, wskazującymi na początki procesów zwłóknieniowych. Wzrost stężeń frakcji respirabilnej powyżej 10 mg/m3 (10÷100 mg/m3) przyczyniał się do wzrostu liczby obserwowanych przypadków zwłóknień w płucach. Stężenie 10 mg/m3 (frakcja respirabilna) przyjęto jako wartość LOAEL. Do wyliczenia wartości NDS przyjęto cztery współczynniki niepewności. Uzyskano wartość NDS na poziomie 2,5 mg/m3, którą przyjęto dla glinu zawartego w pyle całkowitym. Natomiast wartość NDS pyłu respirabilnego stanowi średnio 50% obliczonej wartości dla pyłu całkowitego, czyli około 1,2 mg/m3 (jako dymy, pył respirabilny). Ustalone wartości NDS powinny zabezpieczyć pracowników przed działaniem zwłókniającym pyłów i dymów glinu powstających w różnych procesach wytwarzania i przetwarzania aluminium, a także przed działaniem zwłókniającym innych związków pylicotwórczych towarzyszących tym procesom. Nie ma podstaw do ustalenia wartości DSB. Ze względu na fakt, że działanie drażniące dymów i pyłów występuje jedynie w warunkach narażenia długotrwałego, nie ma podstaw do ustalenia wartości NDSCh.
EN
Aluminum (Al) is a silver-white metal with the atomic weight of 26.98 and melting temperature of 660.4 C. The earth’s crust contains about 8% aluminum. Aluminum production consists in electrolysis of aluminum oxide (Al2 O3). Aluminum is used to produce household equipment and various utensils, as well as chemical appliances, aircraft, motor vehicles, in metallurgy, to cover the surface of telescope mirrors, in decorative wrapping paper and packaging. Powdered metal is used in laboratories as a reduction factor in the manufacturing explosive materials, paints, pigments and in welding with Goldschmidt’s method. Occupational exposure occurs during aluminum production, in welding technologies, as well as in manufacturing final aluminum products.
4
Content available Adypinian bis(2- etyloheksylu)
PL
Adypinian bis(2-etyloheksylu) (DEHA) jest stosowany głównie jako plastyfikator w produkcji i przetwórstwie polichlorku winylu, polistyrenu i innych polimerów, w produkcji nitrocelulozy i kauczuku syntetycznego, a także jako rozpuszczalnik i składnik smarów stosowanych w lotnictwie. Jest też wykorzystywany w przemyśle kosmetycznym. W warunkach narażenia zawodowego adypinian bis(2-etyloheksylu) może wchłaniać się do organizmu na drodze inhalacyjnej i przez skórę. Narażenie zawodowe na aerozole adypinianu bis(2-etyloheksylu) dotyczy przede wszystkim osób zatrudnionych przy produkcji związku oraz jego stosowania, głównie jako plastyfikatora w produkcji i przetwórstwie tworzyw polistyrenowych i poliuretanowych, zwłaszcza w procesach przebiegających w wysokich temperaturach (cięcie folii żywnościowych i innych materiałów używanych do pakowania żywności). W dostępnym piśmiennictwie nie ma doniesień na temat szkodliwego działania adypinianu bis(2-etyloheksylu) na ludzi. Wartość LD50 adypinianu bis(2-etyloheksylu) po podaniu per os szczurom ustalono na poziomie 9110 mg/kg m.c. Dane w piśmiennictwie dotyczące toksyczności ostrej i przewlekłej związku wskazują, że narządem docelowego działania adypinianu bis(2-etyloheksylu) u zwierząt jest wątroba, a krytycznym objawem działania związku jest rozrost (proliferacja) peroksysomów w hepatocytach. Adypinian bis(2-etyloheksylu) nie wykazywał działania genotoksycznego w wielu układach eksperymentalnych, powodował występowanie pierwotnych raków wątroby u myszy, nie powodował jednak wzrostu częstości występowania zmian nowotworowych u szczurów. W 2000 r. eksperci IARC na podstawie istniejących danych toksykologicznych, biorąc pod uwagę przypuszczalny mechanizm działania adypinianu bis(2-etyloheksylu), zaliczyli związek do grupy 3., argumentując to brakiem wystarczających dowodów rakotwórczego działania związku u ludzi i zwierząt doświadczalnych. Nowotwory wykryte u zwierząt doświadczalnych (myszy) powstają na drodze niegenotoksycznego mechanizmu i są następstwem proliferacji peroksysomów w wątrobie i wzrostu zawartości aktywnych form tlenu w hepatocytach. Zdaniem ekspertów IARC wyniki badań dotyczących molekularnych podstaw proliferacji peroksysomów wskazują, że ludzkie hepatocyty mogą być oporne na indukcję proliferacji peroksysomów odpowiadającą za powstawanie procesu nowotworowego u gryzoni. W badaniach na szczurach adypinian bis(2-etyloheksylu) wykazywał działanie embriotoksyczne, fetotoksyczne i teratogenne. Nie obserwowano działania gonadotoksycznego oraz wpływu związku na rozrodczość zwierząt. Za podstawę wartości NDS adypinianu bis(2-etyloheksylu) przyjęto wyniki dwuletnich badań na szczurach przeprowadzonych przez NTP, w których nie stwierdzono u zwierząt wzrostu częstości występowania nowotworów, a za największą dawkę, po której nie obserwowano szkodliwego działania związku (NOAEL) uznano wartość 700 mg/kg m.c./dzień. Dawkę tę przeliczono na równoważne dla człowieka stężenie związku w powietrzu, a następnie podzielono przez sumaryczny współczynnik niepewności i wyznaczono wartość NDS na poziomie 400 mg/m3. Nie ma podstaw do ustalenia wartości najwyższego dopuszczalnego stężenia chwilowego (NDSCh) adypinianu bis(2-etyloheksylu). Nie ma też podstaw do ustalania wartości dopuszczalnego stężenia w materiale biologicznym (DSB) adypinianu bis(2-etyloheksylu). Wyniki badań na zwierzętach upoważniają do zaliczenia adypinianu bis(2-etyloheksylu) do związków mających działanie fetotoksyczne i teratogenne, dlatego proponuje się oznakowanie związku literami „Ft” oznaczającymi substancję działającą toksycznie na płód.
EN
Bis(2-ethylhexyl) adipate (DEHA) is used primarily as a plasticizer in the flexible vinyl industry and is widely used in flexible poly(vinyl chloride) food film. It is also used as a solvent and as a component of aircraft lubricants. It is important in the processing nitrocellulose and synthetic rubber and in the cosmetic industry (cellulose-based liquid lipsticks). Occupational exposure to DEHA may occur through inhalation or dermal contact during its manufacture and its use. Bis(2-ethylhexyl) adipate is rapidly and completely absorbed after oral administration, rapidly and extensively metabolized and excreted in humans and laboratory animals. In the available literature no data on the toxicity DEHA in humans have been found. The oral LD50 in rats is 9110 mg/kg body weight. DEHA exerts systemic action mainly on the liver in acute and chronic toxicity in laboratory animals. The critical effects of DEHA activity is induced hepatic peroxisome proliferation. DEHA did not show genotoxic and mutagenic effects in many experimental studies. In carcinogenicity testing this compound caused an increased hepatocellular tumor in mice but not in rats. There are no data on carcinogenicity in humans. DEHA exerts embryotoxic, fetotoxic and teratogenic effects in animals. There are no data on reproductive and developmental effects in humans. In setting the exposure limits, the results of chronic toxicity testing were considered. Based on the NOAEL value obtained in an experimental study (700 mg/kg bw per day) and appropriate uncertainty factors, a MAC (TWA) value has been calculated at 400 mg/m3. No STEL value has been established. With regard to fetotoxic effects of DEHA in laboratory animals an Ft notation is considered appropriate.
PL
Pentafluorek bromu (BrF5) jest bezbarwną lub jasnożółtą cieczą. Powyżej temperatury wrzenia (40,3 oC) występuje w postaci bezbarwnego gazu o ostrym, gryzącym zapachu i żrących właściwościach. Jest silnie reaktywny – reaguje ze wszystkimi znanymi substancjami chemicznymi z wyjątkiem azotu, tlenu i gazów szlachetnych; gwałtownie i wybuchowo reaguje z wodą i związkami organicznymi. Pentafluorek bromu jest produkowany na skalę przemysłową w reakcji bromu i fluoru w temperaturze 200 oC w żelaznych lub miedzianych naczyniach. Jest stosowany w syntezach organicznych jako silny czynnik fluoryzujący, głównie do produkcji fluoropochodnych węglowodorów. Stosowany także jako utleniacz w paliwie rakietowym. W niewielkiej ilości powstaje podczas produkcji trójfluorku bromu. Narażenie na pary pentafluorku bromu występuje w procesie produkcji oraz przy stosowaniu substancji do syntez organicznych. Kontakt ciekłego pentafluorku bromu lub jego par zekórą lub oczami powoduje głębokie, bolesne i długotrwałe oparzenia. Krótkotrwałe narażenie inhalacyjne na związek o dużych stężeniach powoduje poważne uszkodzenia w układzie oddechowym, podobne do uszkodzeń wywołanych narażeniem na fosgen. Krótkotrwałe narażenie na związek o małych stężeniach powoduje łzawienie i trudności w oddychaniu już po kilku minutach. Skutki narażenia na pary pentafluorku bromu w postaci obrzęku płuc mogą być oddalone w czasie o 24 do 48 h. Pentafluorek bromu w warunkach narażenia zawodowego jest wchłaniany w drogach oddechowych. W płucach pod wpływem wody dysocjuje szybko do fluorowodoru i w tej postaci jest transportowany do wszystkich tkanek organizmu. Wydalanie jonów fluorkowych odbywa się z moczem. W dostępnym piśmiennictwie nie ma informacji na temat badań dotyczących działania toksycznego pentafluorku bromu na zwierzęta laboratoryjne. Prezentowane dane eksperymentalne dotyczą trifluorku chloru, związku o podobnej reaktywności co BrF5. Działanie obu tych substancji jest podobne, ponieważ w kontakcie z wodą tworzą kwas fluorowodorowy dysocjujący z wytworzeniem jonu fluorkowego, którego silna reaktywność jest przyczyną działania drażniącego, szczególnie silnego w miejscach kontaktu z substancją, a więc w drogach oddechowych, skórze i oku. W tkankach jon fluorkowy może m.in. powodować zaburzenia gospodarki wapniowej, niszczyć strukturę błon komórkowych przez wiązanie się z wapniem oraz ograniczać aktywność wielu enzymów. Proponujemy przyjęcie wartości najwyższego dopuszczalnego stężenia (NDS) dla pentafluorku bromu analogicznej do przyjętej dla fluorowodoru, czyli 0,5 mg/m3 oraz wartości najwyższego dopuszczalnego stężenia chwilowego (NDSCh) równej 1 mg/m3, co ograniczy możliwość występowania objawów nadwrażliwości oskrzeli na fluorki nieorganiczne, w tym HF. Przyjęcie zaproponowanej wartości najwyższego dopuszczalnego stężenia chwilowego powinno zabezpieczyć pracowników przed działaniem drażniącym związku na układ oddechowy, skórę i oko oraz przed możliwością wystąpienia zmian kostnych.
EN
Bromine pentafluoride is a colorless or light yellow liquid. The material has a chemical reactivity similar to that of elemental fluorine. At temperatures above its boiling point, it is a colorless, pungent, and corrosive gas. Bromine pentafluoride has been used predominantly as a fluorinating agent to produce fluorocarbons and as an oxidizer in rocket propellant systems. Occupational exposures occur mostly during these uses and in the manufacture of the material. Contact of the vapor or liquid bromine pentafluoride with the skin or eyes causes painful, deepseated, long-lasting burns. Relatively short exposures at high concentrations cause serious lung injury similar to that seen in phosgeneexposed individuals (e.g., pulmonary fibrosis, emphysema, atelectasis, bronchitis); lower concentrations cause watering of the eyes and difficulty in breathing within a few minutes. Bromine pentafluoride will react with the moist tissues of the nasal passages and eyes. Based on the toxicologic analogy of bromine pentafluoride with hydrogen fluoride we established 0.5 mg/m3 as the maximum exposure limit (maximum admissible concentration) for bromine pentafluoride. This value should minimize the development of serious systemic injury and should be sufficiently low to prevent irritation of the upper respiratory passages. Based on the results obtained from clinical studies of human exposure at concentration of hydrogen fluoride, 1 mg/m3 is proposed as a STEL value for bromine pentafluoride. Because bromine pentafluoride has been shown to have corrosive effects we suggest an additional determination with the letter C.
PL
Benzotiazol jest cieczą o nieprzyjemnym, podobnym do chinoliny zapachu. Jest stosowany jako związek pośredni w syntezie organicznej (do syntezy barwników cyjanowych), środek poprawiający smak w produktach żywnościowych i środek przeciwgrzybiczy przy impregnacji obuwia. Benzotiazol występuje także jako związek naturalny. Narażenie zawodowe na benzotiazol drogą inhalacyjną i dermalną dotyczy głównie osób zatrudnionych przy jego produkcji oraz w przemyśle gumowym (np.: przy procesie wulkanizacji gumy, utwardzaniu kauczuku, w przemyśle opon samochodowych), a także osób zatrudnionych w przedsiębiorstwach drogowych (przy wylewaniu mas bitumicznych). Wyniki badań toksyczności ostrej pozwalają na sklasyfikowanie benzotiazolu jako związku szkodliwego, niezależnie od drogi podania. Wartości LD50 po podaniu per os szczurom ustalono na poziomie 177 - 479 mg/kg m.c., a po naniesieniu na skórę szczura na poziomie 933 - 1233 mg/kg m.c. Wyznaczona wartość LC50 po narażeniu inhalacyjnym szczurów wynosiła około 5000 mg/m3 . W dostępnym piśmiennictwie nie znaleziono informacji o zatruciach ostrych i przewlekłych benzotiazolem u ludzi. U myszy, szczurów i królików wykazano, że benzotiazol może działać szkodliwie na układ nerwowy i wątrobę. U kotów stwierdzono słabe, odwracalne działanie methemoglobinotwórcze. Związek może działać drażniąco na błony śluzowe oczu i górnych dróg oddechowych oraz na skórę. Benzotiazol nie wykazywał działania mutagennego w krótkoterminowych testach mutagenności, nie został również zaliczony do czynników rakotwórczych w żadnym systemie klasyfikacji (IARC, UE, EPA i ACGIH). W dostępnym piśmiennictwie nie znaleziono danych dotyczących działania teratogennego benzotiazolu oraz jego wpływu na rozrodczość. Na podstawie wyników badań na zwierzętach można przypuszczać, że benzotiazol wykazuje działanie embriotoksyczne. W Polsce i na świecie nie ustalono dotąd wartości normatywów higienicznych dla benzotiazolu. Wartość NDS benzotiazolu wynoszącą 20 mg/m3 obliczono z wartości LOAEL wyznaczonej w badaniach na szczurach, którą przeliczono na równoważne dla człowieka stężenie związku w powietrzu, a następnie podzielono przez odpowiednie współczynniki niepewności. Opierając się na wartościach medialnych dawek śmiertelnych po podaniu substancji na skórę królika i szczura, zaproponowano oznakowanie benzotiazolu literami „Sk” oznaczającymi, że substancja wchłania się przez skórę. Nie ma podstaw do ustalania wartości najwyższych dopuszczalnych stężeń chwilowych (NDSCh) i dopuszczalnych stężeń biologicznych (DSB) benzonatiolu.
EN
Benzothiazole is a yellow liquid with an unpleasant odor similar to quinoline. Benzothiazole is used as a chemical intermediate in organic synthesis. It is a precursor of rubber accelerators and a component of cyanine dyes. It is also used as a flavoring substance in foods and as an antimicrobial agent. Occupational exposure to benzothiazole through inhalation or dermal contact occurs mostly at rubber processing facilities and during asphalt paving. Benzothiazole is harmful substance in laboratory animals in acute toxicity testing. It exerts systemic action on the central nervous system and the liver. In the available literature no data on the toxicity in humans, or genotoxicity, carcinogenicity, fetotoxicity, and teratogenicity of benzothiazole in laboratory animals have been found. In setting exposure limits, the results of an acute toxicity testing were considered. Based on the LOAEL value obtained in an experimental study (135 mg/kg) and the relevant uncertainty factors, a MAC (TWA) value has been calculated at 20 mg/m3 . With regard to systemic effects of benzothiazole no STEL value has been established. Because benzothiazole has been shown to penetrate the skin in amounts sufficient to induce systemic toxicity, a skin notation (Sk) is considered appropriate. notation (Sk) is considered appropriate.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.