Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  warstwy nanokrystaliczne
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
PL
W pracy przedstawiono wyniki badań nanokrystalicznych warstw kompozytowych miedź/nanorurki węglowe (Cu/CNTs) wytworzonych w wyniku procesu elektrokrystalizacji na podłożu ze stali węglowej S235JR. Badania obejmowały warstwy kompozytowe Cu/CNTs oraz w celach porównawczych warstwy miedziane o nanokrystalicznej strukturze, wytwarzane metodą elektrokrystalizacji. Badania fazy dyspersyjnej CNTs oraz jej identyfikację w warstwach kompozytowych realizowano za pomocą skaningowej mikroskopii elektronowej (SEM) i transmisyjnej mikroskopii elektronowej (TEM) oraz spektroskopii Ramana. Strukturę wytworzonych warstw charakteryzowano za pomocą dyfrakcji promieniowania rentgenowskiego (XRD), skaningowej mikroskopii elektronowej (SEM) i transmisyjnej mikroskopii elektronowej (TEM) oraz mikroskopii świetlnej. Wykonano pomiary chropowatości powierzchni oraz mikrotwardości sposobem Vickersa wytworzonych warstw. Elektrochemiczną metodą potencjodynamiczną badano odporność korozyjną warstw kompozytowych Cu/CNTs i miedzianych. Zrealizowane badania wykazały, że warstwa kompozytowa Cu/CNTs charakteryzuje się większym rozwinięciem powierzchni w porównaniu z warstwą Cu. Wbudowanie CNTs w osnowę nanokrystalicznej miedzi powoduje zwiększenie twardości materiału warstwy. Pomimo większej chropowatości powierzchni warstwy kompozytowe Cu/CNTs wytwarzane metodą elektrokrystalizacji wykazują większą odporność na korozję w porównaniu z nanokrystaliczną warstwą Cu.
EN
The paper presents the results of studies of nanocrystalline composite layers formed by copper/carbon nanotubes (Cu/CNTs) produced by the electrocrystalization process on a carbon steel S235JR substrate. Research has concerned composite Cu/CNTs layers and for comparative purposes a copper layer with nanocrystalline structure produced by electrocrystalization method. Studies of the disperse CNTs phase and its identification in the composite layers were carried out using scanning electron microscopy (SEM) and transmission electron microscopy (TEM) as well as Raman spectroscopy. The structure of the produced layers was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM), and light microscopy. Measurements of surface roughness and microhardness by Vickers method of the produced layers are reported. The corrosion resistance of composite Cu/CNTs layers and copper layers were investigated by potentiodynamic electrochemical method. Accomplished studies have shown that the composite Cu/CNTs layer exhibits a greater extension of the surface when compared to the Cu layer. The built-in of CNTs into the matrix of nanocrystalline copper increases hardness of the layer material. Despite the greater roughness of the surface the composite Cu/CNTs layers prepared by the electrocrystalization method have greater corrosion resistance in comparing to nanocrystalline Cu layer.
PL
W niniejszej pracy analizowane są możliwości zastosowania niektórych efektów kwantowych w celu zwiększenia wydajności i stabilności cienkowarstwowych krzemowych ogniw słonecznych. Szczególnie zwraca się uwagę na nanostrukturyzację elektrody frontowej ogniwa w celu nie tylko zwiększenia ilości pułapkowanego światła ale również wykorzystania zjawiska kreacji wieloekscytonowej przez wysokoenergetyczne kwanty światła. Również podkreśla się istotą rolę zastosowania właściwych luster odbijających w tym lustra Braggowskiego. Analizowana jest metoda wytwarzania warstw nie tylko amorficznych ale także nanokrystalicznych charakteryzujących się zwiększoną absorpcją światła oraz ruchliwością nośników.
EN
In the paper application of selected quantum solutions to the thin silicon solar cell structure for enhancement of their efficiency and stability are analyzed. Nanostructurization of the front electrode may lead not only to the light confinement but also to the multiexciton creations by energetic photon. Important role plays Bragg mirror and Lambertian surface manufacture. Knowledge of silicon transition from amorphous phase to nanocrystaline phase give a possibility to create a material with the higher light absorption.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.