Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 4

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  warstwa azotków
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
PL
W artykule porównano efekty azotowania w procesie regulowanego azotowania gazowego (RAG), stosując atmosfery amoniaku rozcieńczane zdysocjowanym amoniakiem lub azotem, z procesem azotowania w warunkach obniżonego ciśnienia (LPN). Procesom azotowania poddano konstrukcyjne stale stopowe 41CrAlMo7 (38HMJ), 42CrMo4 (40HM), niskowęglowe stale niestopowe (stale 10 i 20) oraz żelazo Armco. Próbki poddano procesom regulowanego azotowania gazowego (RAG) w dwóch wariantach, RAG-1: NH3/NH3zd./N2 = 35/65/0 i RAG-2: NH3/NH3zd./N2 = 5/0/95 oraz zastosowano jeden wariant azotowania pod obniżonym ciśnieniem (LPN). Wspólnym parametrem charakteryzującym analizowane procesy był stopień dysocjacji amoniaku. Na podstawie przeprowadzonych badań wykazano, że w procesie RAG-1 można uzyskać monofazową warstwę azotków żelaza γ′ w dość szerokim zakresie stopni dysocjacji amoniaku. W procesach RAG-2 oraz LPN obszar trwałości fazy γ′ jest znacznie węższy i w związku z tym uzyskanie monofazowej warstwy azotków żelaza γ′ jest znacznie trudniejsze. W procesach LPN ograniczeniu obszaru trwałości fazy γ′ towarzyszy zwiększenie obszaru trwałości fazy α. Warunki kinetyczne w tych procesach sprzyjają wytwarzaniu warstw azotowanych bez przypowierzchniowej warstwy azotków żelaza. Z kolei w procesach azotowania w atmosferach azotujących uzyskanych z atmosfery dwuskładnikowej rozcieńczanej azotem (RAG-2) zwiększa się obszar trwałości fazy ε. Warunki kinetyczne w tych procesach sprzyjają wytwarzaniu warstw azotowanych z warstwami azotków będących mieszaniną faz γ′ i ε.
EN
In the article the effects of nitriding in the process of regulated gas nitriding (RAG) using ammonia atmosphere diluted by dissociated ammonia or by nitrogen with a nitriding process under low pressure (LPN) was compared. In studies 41CrAlMo7 (38HMJ), 42CrMo4 (40HM) alloy steels, low-carbon steels (steels 10 and 20) and Armco iron have been used. Nitriding of specimens was performed in regulated gas nitriding processes (RAG) in two variants, RAG-1: NH3/NH3zd./N2 = 35/65/0 and RAG-2: NH3/NH3zd./N2 = 5/0/95 and applied one variant of a nitriding under low pressure (LPN). Common parameter characterizing the processes was the degree of dissociation of ammonia. On the basis of studies have demonstrated that in the RAG-1 process can be obtained monophase layer of iron nitride γ′ in relatively wide range of dissociation of ammonia. In the RAG-2 and LPN processes γ′ phase stability region is much narrower and thus obtain a monophase layer of iron nitride γ′ is much more difficult. In the LPN processes reduce of area stability of the γ′ phase is accompanied by an increase in α phase stability region. Kinetic conditions in these processes conducive to the production of the nitrided layer without the subsurface layers of the nitrides iron. In turn, in the RAG-2 processes increase the area of ε phase stability. Kinetic conditions in these processes conducive to the production of nitrided layers with the subsurface layers of iron nitrides being a mixture of γ′ and ε phases.
EN
Gas nitriding processes of aircraft parts can cause a lot of difficulties in their implementation. Thus, in order to obtain a correct nitriding layer specified by the manufacturers, the gas nitriding process should be carried out in furnaces with a computer-controlled automated heating settings and parameters, in particular the nitriding atmosphere. In case of nitriding aviation part is often the case that the same load on the quantity of the mass and the surface, is not repeatable. The reason for this are the various development areas and the surface roughness of the nitrided before undergoing the process of shot penning, which can cause a variety of surface development, resulting in a significant way to the nitriding process and its results. The paper shows the possibility of obtaining the correct and required parts of the nitrided layers on the air made of steel 42CrMo4, 41CrMoAl7-10, 32CDV13, EJ961, EJ736 and 15-5PH and their properties such as surface hardness, thickness of the nitrided layer and subsurface layer of iron nitrides and the hardness distributions.
PL
Procesy azotowania gazowego elementów lotniczych mogą sprawiać dużo trudności w ich realizacji. Stąd, w celu otrzymania prawidłowej warstwy azotowanej określonej przez konstruktorów części lotniczych, procesy azotowania gazowego powinny być przeprowadzone w piecach zautomatyzowanych z komputerowym sterowa¬niem parametrów nagrzewania, a zwłaszcza parametrów atmosfery azotującej. W przypadku azotowania części lotniczych często zdarza się, że taki sam wsad odnośnie do ilości, masy i powierzchni części, nie jest powtarzalny. Powodem tego są różne rozwinięcia powierzchni i chropowatości powierzchni, części azotowanych poddawanych przed procesem piaskowaniu, co wpływa w istotny sposób na proces azotowania i jego wyniki. W referacie pokazano możliwości uzyskania prawidłowych i wymaganych warstw azotowanych na częściach lotniczych wykonanych ze stali 42CrMo4, 41CrMoAl7-10, 32CDV13, EJ961, EJ736 i 15-5PH oraz ich właściwości, takie jak: twardość powierzchni, grubość warstwy azotowanej i przypo¬wierzchniowej warstwy azotków żelaza oraz rozkład twardości.
PL
W pracy przedstawiono sposób wytwarzania warstw azotowanych o podwyższonej odporności na korozję na stalach węglowych. Za odporność korozyjną warstw azotowanych odpowiedzialna jest przypowierzchniowa warstwa azotków żelaza. Warstwa ta powinna posiadać budowę monofazową (azotek Fe4N – ?’) i nie posiadać strefy porowatej. W artykule omówiono sposób powstawania takiej warstwy na stalach węglowych, podczas procesu regulowanego azotowania gazowego oraz pokazano wyniki badań odporności korozyjnej mierzonej metodami elektrochemicznymi i w komorze solnej. Wyniki badań potwierdziły dobrą odporność korozyjną warstw azotowanych na stalach węglowych z przypowierzchniową warstwą azotków żelaza o grubościach 5-12 mm.
EN
The paper presents amethod for preparing nitrided layers oncarbon steels with improved corrosion resistance. Ironnitrides subsurfacelayer is responsible forcorrosion resistanceof nitrided layers. This layer should have monophasic structure(nitride Fe4N-?') and it should not have aporouszone. In the paper it is shown howsuch layeris created on carbon steel surface during controlled gas nitriding process. Research resultsof layers corrosion resistance measured by electrochemical methods and in salt spray chamber are presented. The results confirmed good corrosion resistance of nitrided layers on carbon steels with the subsurface layer of iron nitride with thickness 5-12 mm.
PL
W artykule przedstawiono dwa sposoby antykorozyjnego regulowanego azotowania. Pierwszy sposób polega na wytworzeniu na częściach maszyn narzędziach grubych warstw azotków o grubości 15 - 25žm ze strefa porowatą. Po azotowaniu części te są utleniane i impregnowane. Jest to sposób azotowania szeroko rozpowszechniony w przemyśle. Dla tego typu azotowaniu pokazano obecne zastosowania przemysłowe. Drugi sposób azotowania antykorozyjnego jest to azotowanie z wytworzeniem szczelnych warstw azotków na powierzchni bez utleniania i impregnacji. Warstwy te składają się z fazy Fe4N (y') lub mieszaniny y' z niewielkim dodatkiem fazy Fe2-3N (e). Grubość tych warstw wynosi do 10 žm Jest to perspektywiczna metoda wciąż rozwijana i opracowywana w Instytucie Mechaniki Precyzyjnej (IMP).
EN
The paper presents two types of anticorrosion gas nitriding. The thick nitride layers with porous zone (thickness about 15-25žm) on machinery parts and tools are of the first type. There are oxidation and impregnation processes of these parts after nitriding. Examples of industrial applications are shown in the paper. Second type of anticorrosion gas nitriding is obtained by controlled gas nitriding without porous layers and without oxidation and impregnation processes. The nitride layers consist of Fe4N phase (y) only or mixture phases Fe4N and Fe2-3N (e). Thickness of the layers is up to 10 žm. This method is still developed in Institute of Precision Mechanics (IMP).
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.