Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  walnut shell
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Around the world, the increasing population and consumption are placing huge demands on food. Agriculture is considered one of the important sectors in the world and the force to feed humanity. While under these circumstances, which stand out by successive years of drought, degradation of soil, climate change, and global warming, this sector has multifaceted a major issue that goes beyond threatening food security. Thus, Morocco characterized by an arid and semi-arid climate is one example of countries that suffered from those problems. Due to lack of rain, the water resources of some Moroccan arable lands are consumed highly as well as the quality of its soils is now degraded. This issue calls for new approaches to amending the degraded soils in these regions and sustain water supplies. Indeed, biochar can be a remedy for these poor soils; in fact, it has an incredible sequester carbon on soil, a benefit on the environment as well as on plant growth. Despite its virtues, certain biochars contain phytotoxic compounds. In this study, four biochars prepared from banana waste, peanut hull, almond shells, and walnut shells were tested on three plant species (cress to test (HAP), barley for assessing heavy metals, and lettuce to assess salinity) before any field application. The chemical and physical analysis was done for the four biochars and the sandy soil, the four biochars were also analyzed by scanning electron microscopy (SEM) for identifying the morphology of each biochar. The results showed that the four biochars enhanced water holding capacity (WHC), they also revealed the existence of heavy metals especially for almond shells biochar and walnut shells biochar. While for the morphology of each biochar, banana waste biochar (BC-BW) and peanut hull biochar (BC-PeH) had more pores than almond shells biochar (BC-Alm) and walnut shells biochar(BC-WS). Concerning the phytotoxic tests, the lettuce was germinated in all biochars treatments except for the 8% biochar banana treatment, for the cress and barley, all the treatments were grown.
EN
Biocomposites consisting of polylactic acid reinforced with 2 to 8 wt.% walnut shell and pine needle ash fillers were fabricated by the microwave heating technique. The mechanical properties such as tensile strength, flexural strength, impact strength, Vickers hardness, and sliding wear behavior of the produced biocomposites were examined. The tensile strength declined by 11.62% with a reinforcement of 8 wt.% pine needle ash (PNA) in the PLA matrix as compared to the neat PLA matrix. The flexural strength also dropped by 3.09% with the reinforcement of 8 wt.% PNA in the PLA matrix compared to the neat PLA. It was found that the impact energy was enhanced by 77.27 and 66.67% with the reinforcement of 8 wt.% PNA and WN fillers in the PLA matrix, respectively. The Vickers hardness also improved by 14.54 and 10.35% with the reinforcement of 8 wt.% PNA and WN fillers in the PLA matrix, respectively. In addition, the weight loss due to sliding wear was improved by 95.86 and 94.52% with the reinforcement of 8 wt.% WN and PNA fillers in the PLA matrix as compared to the neat PLA matrix, respectively. The drilling forces (thrust force and torque) were additionally recorded during the drilling process of the PNA and WN filled PLA based biocomposites.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.