Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!

Znaleziono wyników: 1

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  włamania do sieci
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
This study investigates the integration of MultilayerPerceptron (MLP) architecture in Network Intrusion Detection Systems (NIDS) to strengthen cyber defencesagainst evolving threats. The goal is to explore the potential of MLP in learning complex patterns and adapting to dynamic attack vectors, thereby improving detection accuracy. Key results from 5-fold cross-validation demonstrate model consistency, achieving an average accuracy of 0.97 with minimal standard deviation. Further evaluation across multiple nodes per layer and train-test splits demonstrate model robustness, displaying high metrics such as AUC-ROC and F1-Score. Challenges, such as the scarcity of large labelleddatasets and complex model interpretability,are acknowledged. This study provides a comprehensive foundation for future investigations, suggesting potential directions such as integrating advanced neural network architectures and assessing model transferability. In conclusion, this study contributes to the evolving intersection of machine learningand cyber security, offering insights into the strengths, limitations, and future directions of MLP-based NIDS. As cyber threats evolve, continued refinement of MLP methods is critical to effective network defencesagainst sophisticated adversaries.
PL
W niniejszym artykule zbadano integrację architektury wielowarstwowego perceptronu (MLP) w systemach wykrywania włamań do sieci (NIDS) w celu wzmocnienia cyberobrony przed ewoluującymi zagrożeniami. Celem jest zbadanie potencjału MLP w uczeniu się złożonych wzorcówi dostosowywaniu się do dynamicznych wektorów ataków, a tym samym poprawienie dokładności wykrywania. Kluczowe wyniki 5-krotnej walidacji krzyżowej wykazują spójność modelu, osiągając średnią dokładność 0,97 przy minimalnym odchyleniu standardowym. Dalsza ocena w wielu węzłachna warstwę i podziały trening-test wykazują solidność modelu, wykazując wysokie metryki, takie jak AUC-ROC i F1-Score. Wyzwania, takie jak niedobór dużych zestawów danych z etykietami i złożona interpretowalność modelu, są uznawane. Niniejsze badanie zapewnia kompleksową podstawę do przyszłych badań, sugerując potencjalne kierunki, takie jak integracja zaawansowanych architektur sieci neuronowych i ocena przenoszalności modelu. Podsumowując, niniejsze badanie przyczynia się do ewoluującego skrzyżowania uczenia maszynowego i cyberbezpieczeństwa, oferując wgląd w mocne strony, ograniczenia i przyszłe kierunki NIDS opartych na MLP. W miarę rozwoju cyberzagrożeń ciągłe udoskonalanie metodMLP staje się kluczowedla skutecznej obrony sieci przed wyrafinowanymi przeciwnikami.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.