Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!

Znaleziono wyników: 1

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  właściwości borowanej stali 41Cr4
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Influence of laser surface modification with re-melting on structure and properties of borided 41Cr4 steel was investigated. Microhardness and wear resistance of surface layer was tested. Crystallite sizes after laser treatment were estimated from half-width of XRD lines using Scherrer method. Surface layer properties after laser modification have been compared with the results after classic heat treatment. After boriding and laser heat treatment with re-melting a layer has been obtained which is composed of three zones: re-melted zone (MZ), heat affected zone (HAZ) and substrate (pearlite and ferrite). Changes of borides morphology and significant refinement of structure in re-melted zone have been shown. X-ray phase analysis of re-melted zone, except two typical for boriding FeB and Fe2B borides allowed to additionally identify Fe3B. Microhardness of surface layer after boriding and laser heat treatment reduce in comparison with borides from 1800 HV to 950-1000 HV at used laser heat treatment parameters. Wear resistance after boriding and laser heat treatment increases in comparison with traditional heat treatment (hardening and tempering) due to decrease of hardness gradient between surface layer and substrate and significant refinement of structure. The mean size of boride crystallites about 40 nm has been obtained in re-melted zone.
PL
W pracy badano wpływ laserowej modyfikacji powierzchni na strukturę i właściwości borowanej stali 41Cr4. wyznaczono profile mikrotwardości i odporność na zużycie przez tarcie. Obliczono średnią wielkość cząstek krystalicznych na podstawie równania Scherrera. Właściwości po laserowej obróbce cieplnej porównano z uzyskiwanymi po klasycznej, objętościowej obróbce cieplnej. Po borowaniu i laserowej obróbce cieplnej z przetopieniem otrzymano warstwę składającą się z trzech stref: strefy przetopionej, strefy wpływu ciepła i nieobrobionego cieplnie podłoża. Stwierdzono zmiany w składzie fazowym warstwy i znaczne rozdrobnienie jej struktury w strefie przetopienia. Wyniki analizy rentgenowskiej, oprócz typowych dla warstwy borków żelaza FeB i Fe2B, pozwoliły na zidentyfikowanie fazy Fe3B. Mikrotwardość warstwy wierzchniej po borowaniu i laserowej obróbce cieplnej spada w porównaniu do mikrotwardości borków żelaza do 950-1000 HV przy zastosowanych parametrach obróbki laserowej. Odporność na zużycie przez tarcie po laserowej modyfikacji jest wyższa w porównaniu do warstw poddawanych tradycyjnej obróbce cieplnej w wyniku obniżonego gradientu twardości między warstwą utwardzoną a rdzeniem oraz znacznego rozdrobnienia struktury. Średnią wielkość krystalitów w strefie przetopienia określono na 40 nm.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.