Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 4

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  volumetric losses
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The effect of gas desorption from the solution with nucleation of gas bubbles is a process that allows to improve fuel atomization in diesel engines. The advantage of such a process, which has been experimentally proven, is a significant reduction in harmful emissions. The conducted research highlighted one of the fundamental problems. This problem concerned the injection pump - it was necessary to design a new construction that would be adapted to the desorption effect. The authors of the work proposed a construction based on a hypocycloidal drive. Due to the nature of the process, i.e. the use of exhaust gases dissolved in diesel fuel, it was very important to analyze the volumetric losses of the compression process - this is the main goal of this article. The authors proved that for the adopted design assumptions, the power of volumetric losses resulting from compressibility is 0.25% of the power consumed by the pump.
EN
In this paper, volumetric losses in a positive displacement pump supplied with water and mineral oil are described and compared. The experimental tests were conducted using a prototype of a satellite pump (with a non-circular tooth working mechanism). In this paper, the sources of volumetric losses in this pump are characterized. On this basis, a mathematical model of these losses has been presented. The results of the calculation of volumetric losses according to the model are compared with the results of the experiment. Experimental studies have shown that the volumetric losses in the water pump are even 3.2 times greater than the volumetric losses in the oil pump. It has been demonstrated that the mathematical model describing the volumetric losses both in the water pump and in the oil pump is quite good. It has been found that the results from the loaded pump simulation (at Δp=25MPa and ant n=1500rpm) differ from the results of the experiment by no more than 5% both for oil and water.
EN
In this paper volumetric losses in hydraulic motor supplied with water and mineral oil (two liquids having significantly different viscosity and lubricating properties) are described and compared. The experimental tests were conducted using an innovative hydraulic satellite motor, that is dedicated to work with different liquids, including water. The sources of leaks in this motor are also characterized and described. On this basis, a mathematical model of volumetric losses and model of effective rotational speed have been developed and presented. The results of calculation of volumetric losses according to the model are compared with the results of experiment. It was found that the difference is not more than 20%. Furthermore, it has been demonstrated that this model well describes in both the volumetric losses in the motor supplied with water and oil. Experimental studies have shown that the volumetric losses in the motor supplied with water are even three times greater than the volumetric losses in the motor supplied with oil. It has been shown, that in a small constant stream of water the speed of the motor is reduced even by half in comparison of speed of motor supplied with the same stream of oil.
EN
This work is focused on the effect of short-circuit currents on linear equipment (cable, pipeline) buried near an overhead transmission line. Its aim was to analyze the volumetric losses in the steel part of the buried linear equipment as a function of the distance from an overhead transmission line. The numerical analysis was performed by simulation software based on the finite element method.
PL
Praca dotyczy efektów generowanych w obiektach liniowych (kablach, rurach) zakopanych w pobliżu linii przesyłowych, w których występują prądy zwarciowe. Celem była ilościowa analiza nagrzewania stalowych części obiektów w funkcji odległości od linii przesyłowej. Symulacje wykonano przy pomocy metody elementów skończonych.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.